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Preface

We taught mechanics of continuous media for two decades at EPFL
(Swiss Institute of Technology in Lausanne) and we used a lot of various
exercises to illustrate the subject.

We have decided to make available these solutions in order to help as
much as possible the understanding of the lecture contents and mastering
of the concepts. The reader will note that some solutions are sometimes
simple to set up. Others are more elaborate, need longer development
and are more difficult to tackle.

We will refer to the equations of the monograph “Mechanics of Conti-
nuous Media : an Introduction” published by EPFL Press, by prefixing
their numbers with the bold character B for Book. The present book of
solutions possesses its own numbering.
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Chapitre 1

Cartesian tensors

Solution 1.1

Through the relations (B1.52) and (B1.15), one has

δ′pq = cpicqjδij = cpjcqj = δpq .

Solution 1.2

By the Kronecker symbol properties, one obtains

δijδikδjk = δ11δ11δ11 + δ22δ22δ22 + δ33δ33δ33 =

= 1 + 1 + 1

= 3 .

One can also demonstrate the relation as follows

δijδikδjk = δijδij = δii = 3 .

Solution 1.3

For the first relation, one has

εijkuiuj = ε123u1u2 + ε231u2u3 + ε312u3u1

+ ε132u1u3 + ε321u3u2 + ε213u2u1 = 0 .

For the second relation, as{
δij 6= 0 if i = j

εijk = 0 if i = j,

it follows that
δijεijk = 0 .



2 Cartesian tensors

Solution 1.4

It is asked to demonstrate the following relation

t× (u× v) = (t · v)u− (t · u)v . (1.1)

By definition of vector product (B1.31), one gets

(u× v)k = εklmulvm .

Therefore the left hand side of (1.1) yields

(t× (u× v))i = εijktj(εklmulvm) = εijkεklmtjulvm . (1.2)

By (B1.30), we know that

εijkεklm = δilδjm − δimδjl .

Combining (1.2) and (B1.30), one obtains successively

εijkεklmtjulvm = (δilδjm − δimδjl)tjulvm
= δilδjmtjulvm − δimδjltjulvm
= uitmvm − vitjuj
= (t · v)u− (t · u)v .

Solution 1.5

Note that

(a× b)i = εijkajbk and (c× d)l = εlmncmdn .

Then one writes

((a× b)× (c× d))r = εril(εijkajbk)(εlmncmdn) .

Let us note that εril = εilr = εlri. Consequently

εlri(εijkajbk)(εlmncmdn) = εlriεlmnεijkajbkcmdn .

Using identity (B1.30), εlriεlmn = δrmδin − δrnδim, one obtains

εril(εijkajbk)(εlmncmdn) = (δrmδin − δrnδim)εijkajbkcmdn

= εijkδrmδinajbkcmdn − εijkδrnδimajbkcmdn
= εijkajbkcrdi − εijkajbkcidr
= εjkibkdiajcr − εjkibkciajdr
= (a · (b× d)) cr − (a · (b× c)) dr .

Finally

(a× b)× (c× d) = (a · (b× d)) c− (a · (b× c))d .
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Solution 1.6

Identity (B1.230)

Expressing it in index notation one has

∇ · (a× b) =
∂

∂xj
(εjklakbl)

= εjklak
∂bl
∂xj

+ εjklbl
∂ak
∂xj

= −εkjlak
∂bl
∂xj

+ εljkbl
∂ak
∂xj

= −a · (∇× b) + (∇× a) · b .

Identity (B1.231)

By definition, the expression (a ·∇)b with index notation is written
as

((a ·∇)b)i = aj
∂bi
∂xj

.

With the curl definition (B1.177), one has

(∇× b)i = (curl b)i = εijk
∂bk
∂xj

.

As a consequence,

(a× (∇× b))m = εmniεijkan
∂bk
∂xj

.

With (B1.30), one has

εmniεijk = εimnεijk = δmjδnk − δmkδnj .

The third term of the right hand side of (B1.231) becomes

(a× (∇× b))m = (δmjδnk − δmkδnj)an
∂bk
∂xj

= δmjδnkan
∂bk
∂xj
− δmkδnjan

∂bk
∂xj

= ak
∂bk
∂xm

− aj
∂bm
∂xj

.

Accordingly, one finds

aj
∂bi
∂xj

+ bj
∂ai
∂xj

+ an
∂bn
∂xi
− aj

∂bi
∂xj

+ bn
∂an
∂xi
− bj

∂ai
∂xj

= an
∂bn
∂xi

+ bn
∂an
∂xi

=
∂(anbn)

∂xi
= (∇(a · b))i .
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Identity (B1.232)

The right hand side of (B1.232) is written as

bj
∂ai
∂xj
− aj

∂bi
∂xj

+ ai
∂bj
∂xj
− bi

∂aj
∂xj

=
∂(aibj)

∂xj
− ∂(ajbi)

∂xj
.

The left hand side gives

εmni
∂(εijkajbk)

∂xn
= εmniεijk

∂(ajbk)

∂xn
. (1.3)

By (B1.30), one has

εmniεijk = εimnεijk = δmjδnk − δmkδnj .

Relation (1.3) becomes

(δmjδnk − δmkδnj)
∂(ajbk)

∂xn
=
∂(ambn)

∂xn
− ∂(anbm)

∂xn
.

Identity (B1.233)

We successively obtain

∂

∂xj
(aibj) = ai

∂bj
∂xj

+ bj
∂ai
∂xj

= adiv b+ (∇a)b .

Solution 1.7

Identity (B1.234)

One writes successively

(curl(Φa))i = εijk
∂(Φak)

∂xj

= εijk
∂Φ

∂xj
ak + εijkΦ

∂ak
∂xj

=∇Φ× a+ Φ curla

= −a×∇Φ + Φ curla .

Identity (B1.235)

One has

(∇(Φa)))i =
∂Φai
∂xj

= Φ
∂ai
∂xj

+ ai
∂Φ

∂xj

= Φ∇a+ a⊗∇Φ .
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Identity (B1.236)

The j component of gradient of Φ yields

(∇Φ)j =
∂Φ

∂xj
.

Therefore

(
(
∇2 (∇Φ)

)
j

=
∂2

∂xi∂xi

(
∂Φ

∂xj

)
=

∂

∂xj

(
∂2Φ

∂xi∂xi

)
=
(
∇(∇2Φ)

)
j
.

Thus
∇2 (∇Φ) =∇

(
∇2Φ

)
.

Identity (B1.237)

The l component of the vector corresponding to the left hand side is
such that(
∇×

(
∇2a

))
l

=

(
εijk

∂

∂xj

(
∂2ak

∂xm∂xm

))
l

=

(
εijk

∂2

∂xm∂xm

(
∂ak
∂xj

))
l

=

(
∂2

∂xm∂xm

(
εijk

∂ak
∂xj

))
l

=
(
∇2 (∇× a)

)
l
.

Identity (B1.238)

First indexed equality

(∆a)k =
∂2ak

∂xm∂xm
=

∂

∂xm

(
∂ak
∂xm

)
= (∇ · (∇a))k .

Second equality

(∇× a)i = εijk
∂ak
∂xj

(∇× (∇× a))l = εlmi
∂

∂xm

(
εijk

∂ak
∂xj

)
= εlmiεijk

∂2ak
∂xm∂xj

.

Note that by (B1.30), one has

εlmiεijk = εilmεijk = δljδmk − δlkδmj .

Therefore, one obtains

εlmiεijk
∂2ak

∂xm∂xj
= (δljδmk − δlkδmj)

∂2ak
∂xm∂xj

= δljδmk
∂2ak

∂xm∂xj
− δlkδmj

∂2ak
∂xm∂xj
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and then

(∇× (∇× a))l =
∂2am
∂xm∂xl

− ∂2al
∂xj∂xj

=
∂

∂xl

(
∂am
∂xm

)
− ∂2al
∂xj∂xj

=
∂

∂xl
(∇ · a)−∆al

=
(
∇(∇ · a)−∇2a

)
l
.

This last relation is valid for each component of the vector function a

∆a =∇(∇ · a)− curl curl a .

Solution 1.8

Identity (B1.239)

The i component of the vector corresponding to the left hand side is
such that

(∇ (a · x))i =

(
∂aj
∂xi

xj + ajδij

)
=

(
∂aj
∂xi

xj + ai

)
=
(
a+ (∇a)T x

)
i
.

Thus
∇ (a · x) = a+ (∇a)T x .

Identity (B1.240)

The Laplacian is written

∇2 (a · x) =
∂2(aixi)

∂xj∂xj
=

∂

∂xj

(
∂(aixi)

∂xj

)
.

Carrying out the algebra, one has

∂

∂xj

(
∂(aixi)

∂xj

)
=

∂

∂xj

(
∂ai
∂xj

xi + ai
∂xi
∂xj

)
=

∂

∂xj

(
∂ai
∂xj

xi + aiδij

)
=

∂2ai
∂xj∂xj

xi +
∂ai
∂xj

∂xi
∂xj

+ δij
∂ai
∂xj

=
∂2ai
∂xj∂xj

xi +
∂ai
∂xj

δij + δij
∂ai
∂xj

=
∂2ai
∂xj∂xj

xi + 2
∂ai
∂xj

δij

= (∇2a)i + 2(div a)i .

Thus
∇2 (a · x) = 2 div a+ x ·

(
∇2a

)
.
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Identity (B1.241)

The Laplacian is written(
∇2 (Φx)

)
i

=
∂2(Φxi)

∂xj∂xj
=

∂

∂xj

(
∂(Φxi)

∂xj

)
=

∂

∂xj

(
∂Φ

∂xj
xi + Φ

∂xi
∂xj

)
=

∂2Φ

∂xj∂xj
xi +

∂Φ

∂xj
δij +

∂Φ

∂xj
δij =

∂2Φ

∂xj∂xj
xi + 2

∂Φ

∂xi
.

Thus (
∇2 (Φx)

)
i

= (x∇2Φ)i + 2(∇φ)i

∇2 (Φx) = 2∇Φ + x∇2Φ .

Solution 1.9

One writes with (B1.52)

L′ij = e′i ·Le′j =

= (cikek) ·L(cjlel) =

= cikcjlek ·Lel =

= cikcjlLkl .

Moreover, by (B1.15)
cikcil = δkl .

One has

tr(L′) = L′ii

= cikcilLkl

= δklLkl

= Lkk

= tr(L) .

Solution (1.10)

Identity (B1.69)

One has successively

u · LTv = ui
(
LT
)
im
vm = uiLmivm = Lmiuivm = (Lu · v)

u · LTv = ui
(
LT
)
im
vm = uiLmivm = vmLmiui = (v · Lu) .

Identity (B1.71)

By definition of the scalar product of two tensors, one obtains

((a⊗ b)L)ij = (a⊗ b)ik Lkj = aibkLkj = ai
(
LT
)
jk
bk =

(
a⊗LTb

)
ij
.
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Solution 1.11

I1(L) = L11 + L22 + L33 = trL .

I2(L) = L11L22 − L21L12 + L22L33 − L23L32 + L11L33 − L13L31 =

= (L11L22 + L22L33 + L11L33)− (L21L12 + L23L32 + L13L31) =

=
1

2
(L11 + L22 + L33)

2 − 1

2
(L2

11 + L2
22 + L2

33)]

− (L21L12 + L23L32 + L13L31) =

=
1

2
(L11 + L22 + L33)

2

− 1

2
(L2

11 + L2
22 + L2

33 + 2L21L12 + 2L23L32 + 2L13L31) =

=
1

2
(trL)2 − 1

2
(tr(LL))

=
1

2
((trL)2 − (tr(LL)))

=
1

2
(LiiLjj − LijLji) .

I3(L) = det

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 = εijkLi1Lj2Lk3 = detL .

Solution 1.12

With definition (B1.159), one finds

∇(Ajkxjxk) = Ajk∇(xjxk)

= Ajk(xk∇xj + xj∇xk)
= Ajk(xkδij + xjδik)

= Aikxk +Ajixj

= (Aij +Aji)xjei .

Solution 1.13

The tensor Dij is decomposed into the sum of a symmetric tensor
and of an antisymmetric tensor. One has

Dij = DS
ij +DA

ij ,

with the relations
DS
ij = DS

ji



Cartesian tensors 9

and

DA
ij = −DA

ji .

Henceforth, one calculates

Dijxixj = (DS
ij +DA

ij)xixj

= DS
ijxixj +DA

ijxixj .

One uses the fact that the scalar product of the antisymmetric tensor
DA
ij and of the symmetric tensor xixj vanishes (cfr. example B1.7) to

obtain

Dijxixj = DS
ijxixj .

Solution 1.14

As Q is orthogonal, relation (B1.92) gives

Qu ·Qv = u · v .

By (B1.69), one has

Lu · v = u ·LTv = v ·Lu .

Combining these two last relations, one finds

Qu ·Qv = u ·QTQv = u · v

and therefore

QTQ = I .

Then

Q−TQTQQT = Q−T IQT = Q−TQT

one concludes

QQT = I .

Multiplying left and right this equation by Q−1, one writes

QTQQ−1 = IQ−1

and consequently

QT = Q−1 .
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Solution 1.15

The antisymmetric tensor LA has the following matrix

[LA] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


The first invariant is the sum of the diagonal elements (cf. (B1.121))

I1 = 0 .

For I2 and I3, one obtains easily

I2 = ω2
1 + ω2

2 + ω2
3

and
I3 = 0 .

The characteristic equation (B1.120) gives

λ3 + (ω2
1 + ω2

2 + ω2
3)λ = 0

or
(λ2 + (ω2

1 + ω2
2 + ω2

3))λ = 0 .

The eigenvalues are the roots of this equation. One has

λ1 = 0

and

λ2,3 = ±i
√
ω2
1 + ω2

2 + ω2
3 .

The system (B1.111) produces the equations

0− ω3n2 + ω2n3 = 0

ω3n1 + 0− ω1n3 = 0 .

One extracts

n2
n3

=
ω2

ω3
n1
n3

=
ω1

ω3
.

Since the vector n is a unit vector

n21 + n22 + n23 = 1 .
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one finds

n23

((
ω1

ω3

)2

+

(
ω2

ω3

)2

+ 1

)
= 1 .

Finally, one obtains

n1 = ω1

n2 = ω2

n3 = ω3 .

Solution 1.16

By (B1.109) and (B1.59), one has successively

LLni = λiLni

L2ni = λiλini = λ2ini

L3ni = λ2iLni = λ3ini .

Each term of the characteristic equation can be rewritten using the
previous relations

λ3ini = L3ni

−I1λ2ini = −I1L2ni

I2λini = I2Lni

−I3ni = −I3Ini .

By adding one finds consecutively

λ3ini − I1λ2ini + I2λini − I3ni = L3ni − I1L2ni + I2Lni − I3Ini

(λ3i − I1λ2i + I2λi − I3)ni = (L3 − I1L2 + I2L− I3I)ni .

Thus one has
L3 − I1L2 + I2L− I3I = 0 .

Solution 1.17

Multiplying (B1.123) by T−1, one obtains

T 3T−1 − I1T 2T−1 + I2TT
−1 − I3IT−1 = T 2 − I1T + I2I − I3T−1 = 0

or
T 2 = I1T − I2I + I3T

−1 .
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By (B1.139) and (B1.140), one has

L = f(T ) = ϕ0I + ϕ1T + ϕ2(I1T − I2I + I3T
−1) =

= (ϕ0 − ϕ2I2)I + (ϕ1 + ϕ2I1)T + ϕ2I3T
−1

Setting up

α0 = ϕ0 − ϕ2I2

α1 = ϕ1 + ϕ2I1

α2 = ϕ2I3 ,

one obtains relation (B1.245).

Solution 1.18

Let the matrix [A] be of the order 3 such that

[A] =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 . (1.4)

Its determinant is the scalar given by the relation

det[A] = a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33

1) The product εijkεlmnailajmakn generates 36 non vanishing terms
(among the 81 possible) that can be grouped in six independent
components as the one above. Thus the equation

det[A] =
1

6
εijkεlmnailajmakn

is the determinant of [A].

2) By definition, the inverse matrix of [A] is

[A]−1 =
[M ]T

det[A]
, (1.5)

where [M ]T is the transpose of the cofactor matrix of [A] with
det[A] 6= 0. For matrix [A] given by (1.4) the cofactor matrix has
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the following elements

M11 = (−1)1+1

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ M12 = (−1)1+2

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣
M13 = (−1)1+3

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ M21 = (−1)2+1

∣∣∣∣ a12 a13
a32 a33

∣∣∣∣
M22 = (−1)2+2

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ M23 = (−1)2+3

∣∣∣∣ a11 a12
a31 a32

∣∣∣∣
M31 = (−1)3+1

∣∣∣∣ a12 a13
a22 a23

∣∣∣∣ M32 = (−1)3+2

∣∣∣∣ a11 a13
a21 a23

∣∣∣∣
M33 = (−1)3+3

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ .
Thus one can write

[M ] = (a22a33 − a23a32) −(a21a33 − a23a31) (a21a32 − a22a31)
−(a12a33 − a13a32) (a11a33 − a13a31) −(a11a32 − a12a31)
(a12a23 − a13a22) −(a11a23 − a13a21) (a11a22 − a12a21)


These elements are expressed in index notation using the permuta-
tion symbol

Mij =
1

2
εiklεjmnakmaln .

One can verify easily that expression εiklεjmn produces only four non
zero terms or two terms that appear twice. This makes the factor one
half in the last relation necessary. For example

M13 = [ε123ε312a21a32 + ε123ε321a22a31

+ ε132ε312a31a22 + ε132ε321a32a21]/2

= 2(a21a32 − a22a31)/2 .

The transpose of the cofactor matrix [M ] is called the adjoint of [A].
It is expressed as (

[M ]T
)
ij

=
1

2
εjklεimnakmaln . (1.6)

Using (1.6) in (1.5), one obtains in index form the elements of the
inverse matrix (

[A]−1
)
ij

=
1

2 det[A]
εjklεimnakmaln .
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Solution 1.19

A series of algebraic manipulations leads to the result

∇2(fg) =
∂2(fg)

∂x21
+
∂2(fg)

∂x22
+
∂2(fg)

∂x23
=

=
∂

∂x1

(
∂(fg)

∂x1

)
+

∂

∂x2

(
∂(fg)

∂x2

)
+

∂

∂x3

(
∂(fg)

∂x3

)
=

=
∂

∂x1

(
∂f

∂x1
g + f

∂g

∂x1

)
+

∂

∂x2

(
∂f

∂x2
g + f

∂g

∂x2

)
+

∂

∂x3

(
∂f

∂x3
g + f

∂g

∂x3

)
=

=
∂2f

∂x21
g +

∂f

∂x1

∂g

∂x1
+

∂f

∂x1

∂g

∂x1
+
∂2g

∂x21
f+

+
∂2f

∂x22
g +

∂f

∂x2

∂g

∂x2
+

∂f

∂x2

∂g

∂x2
+
∂2g

∂x22
f+

+
∂2f

∂x23
g +

∂f

∂x3

∂g

∂x3
+

∂f

∂x3

∂g

∂x3
+
∂2g

∂x23
f =

=

(
∂2f

∂x21
+
∂2f

∂x22
+
∂2f

∂x23

)
g +

(
∂2g

∂x21
+
∂2g

∂x22
+
∂2g

∂x23

)
f

+ 2
∂f

∂x1

∂g

∂x1
+ 2

∂f

∂x2

∂g

∂x2
+ 2

∂f

∂x3

∂g

∂x3
=

= f∇2g + g∇2f + 2∇f ·∇g .



Chapitre 2

Kinematics of continuous media

Solution 2.1

With relation (B2.8), one writes

U(X, t) = x−X = −1

2
X1e1

and by (B2.9), one has

u(x, t) = −x1e1 .

Solution 2.2

By (B2.133), one has

x1 = X1 + kX2 x2 = X2 x3 = X3 .

Recalling the definition of the deformation gradient tensor (B2.67)

Fij =
∂xi
∂Xj

,

one calculates successively

F =

 1 k 0
0 1 0
0 0 1


the right Cauchy-Green deformation tensor

C = F TF =

 1 0 0
k 1 0
0 0 1

 1 k 0
0 1 0
0 0 1

 =

 1 k 0
k k2 + 1 0
0 0 1


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the left Cauchy-Green deformation tensor

c = FF T =

 1 k 0
0 1 0
0 0 1

 1 0 0
k 1 0
0 0 1

 =

 1 + k2 k 0
k 1 0
0 0 1


the Green-Lagrange deformation tensor

E =
1

2
(C − I) =

1

2

 0 k 0
k k2 0
0 0 0


and the Euler-Almansi deformation tensor

e =
1

2
(I − c−1)

c−1 = F−TF−1

F−1 =

 1 −k 0
0 1 0
0 0 1



F−T =

 1 0 0
−k 1 0
0 0 1



c−1 = F−TF−1 =

 1 −k 0
−k k2 + 1 0
0 0 1



e =
1

2

 0 k 0
k −k2 0
0 0 0

 .

We detail below the computation of F−1 by the adjoint and cofactors
method

Aij = (−1)i+jMij

A11 = (−1)2
∣∣∣∣ 1 0

0 1

∣∣∣∣ = 1

A22 = (−1)4
∣∣∣∣ 1 0

0 1

∣∣∣∣ = 1

A33 = (−1)6
∣∣∣∣ 1 k

0 1

∣∣∣∣ = 1
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A12 = (−1)3
∣∣∣∣ 0 0

0 1

∣∣∣∣ = 0

A13 = (−1)4
∣∣∣∣ 0 1

0 0

∣∣∣∣ = 0

A21 = (−1)3
∣∣∣∣ k 0

0 1

∣∣∣∣ = −k

A23 = (−1)5
∣∣∣∣ 1 k

0 0

∣∣∣∣ = 0

A31 = (−1)4
∣∣∣∣ k 0

1 0

∣∣∣∣ = 0

A32 = (−1)5
∣∣∣∣ 1 0

0 0

∣∣∣∣ = 0

A =

 1 0 0
−k 1 0
0 0 1


AT =

 1 −k 0
0 1 0
0 0 1


|M | =

∣∣∣∣∣∣
1 k 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1

F−1 =
AT

|M |
=

 1 −k 0
0 1 0
0 0 1


F · F−1 =

 1 k 0
0 1 0
0 0 1

 1 −k 0
0 1 0
0 0 1

 =

 1 −k + k 0
0 1 0
0 0 1

 = I

Solution 2.3

M =

 m 0 0
0 m 0
0 0 m


M−1 =

 m−1 0 0
0 m−1 0
0 0 m−1


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As

Fij =
∂xi
∂Xj

one obtains with (B2.130)

F =

 m 0 0
0 m 0
0 0 m


and the right Cauchy-Green deformation tensor as

C = F TF =

 m 0 0
0 m 0
0 0 m

 m 0 0
0 m 0
0 0 m

 =

 m2 0 0
0 m2 0
0 0 m2

 .

Let us remark that C = c as tensors F and F T are diagonal.
The following tensors can be easily expressed :

the Green-Lagrange deformation tensor

E =
1

2
(C − I) =

1

2

 m2 − 1 0 0
0 m2 − 1 0
0 0 m2 − 1


the inverse of the left Cauchy-Green tensor

c−1 = F−TF−1 =

 m−2 0 0
0 m−2 0
0 0 m−2


the Euler-Almansi deformation tensor

e =
1

2
(I −C−1) =

1

2

 1−m−2 0 0
0 1−m−2 0
0 0 1−m−2

 .

Solution 2.4

1) The trajectory is the spatial curve describing the successive positions
x of a particle X with respect to time t. One eliminates the variable
t in the relation x = χ(X, t) in such a way as to obtain a system of
implicit equations linking the positions xi. Thus(

x1 −X1

a

)2

+

(
x2 −X2

b

)2

= cos2 2π(
t

T
− X1

L
)

+ sin2 2π(
t

T
− X1

L
) = 1

x3 = X3 .
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The trajectory of a particle with given material coordinatesX1, X2, X3

is located on the plane x3 = X3. In this plane, the trajectory is an el-
lipse whose centre is at point with coordinates X1, X2, X3 and whose
principal axes are oriented in the directions e1 and e2 and have 2a
and 2b as respective lengths.

2) As the motion is given in the Lagrangian description, one finds the
velocity and acceleration components by taking the partial derivative
with respect to time with the Xj held fixed. One finds

V1 =
∂x1
∂t
|Xj = −2πa

T
sin 2π(

t

T
− X1

L
)

V2 =
∂x2
∂t
|Xj =

2πb

T
cos 2π(

t

T
− X1

L
)

V3 =
∂x3
∂t
|Xj = 0

A1 =
∂V1
∂t
|Xj = −4π2a

T 2
cos 2π(

t

T
− X1

L
)

A2 =
∂V2
∂t
|Xj = −4π2b

T 2
sin 2π(

t

T
− X1

L
)

A3 =
∂V3
∂t
|Xj = 0 .

3) The deformation gradient tensor is obtained by the relation Fij =
∂xi
∂Xj

. Thus one has

[F ] =

 1 + 2πa
L sin 2π( tT −

X1
L ) 0 0

−2πb
L cos 2π( tT −

X1
L ) 1 0

0 0 1

 .

In Lagrangian representation, one writes DF
Dt = ∂

∂tFij |Xk . The ma-

trix [Ḟ ] gives

[Ḟ ] =

 4π2a
LT cos 2π( tT −

X1
L ) 0 0

4π2b
LT sin 2π( tT −

X1
L ) 0 0

0 0 0

 .

4) Using relation (B2.179), Ḟ = LF , one has L = Ḟ F−1. As on the
one hand, det(F ) = 1 + 2πa

L sin 2π( tT −
X1
L ) and on the other hand,

the adjoint of [F ] is written by setting 2π( tT −
X1
L ) = arg

adj[F ] =

 1 0 0
2πb
L cos arg 1 + 2πa

L sin arg 0
0 0 1 + 2πa

L sin arg

 ,
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one obtains

[F−1] = 1
det(F )

adj[F ] =


1

1+ 2πa
L

sin 2π( t
T
−X1

L
)

0 0

2πb
L

cos 2π( t
T
−X1

L
)

1+ 2πa
L

sin 2π( t
T
−X1

L
)

1 0

0 0 1

 .

One thus finds

[L] =


4π2a cos 2π( t

T
−X1

L
)

LT+2πaT sin 2π( t
T
−X1

L
)

0 0

4π2b sin 2π( t
T
−X1

L
)

LT+2πaT sin 2π( t
T
−X1

L
)

0 0

0 0 0

 .

5) the tensors d et ω̇ are respectively the symmetric and antisymmetric
parts of L, cf. (B2.184). One finds

[d] =


4π2a cos 2π( t

T
−X1

L
)

LT+2πaT sin 2π( t
T
−X1

L
)

2π2b sin 2π( t
T
−X1

L
)

LT+2πaT sin 2π( t
T
−X1

L
)

0

2π2b sin 2π( t
T
−X1

L
)

LT+2πaT sin 2π( t
T
−X1

L
)

0 0

0 0 0


and

[ω̇] =


0

−2π2b sin 2π( t
T
−X1

L
)

LT+2πaT sin 2π( t
T
−X1

L
)

0

2π2b sin 2π( t
T
−X1

L
)

LT+2πaT sin 2π( t
T
−X1

L
)

0 0

0 0 0

 .

The evaluation of the components of the vorticity vector is based on
relation (B2.187). One calculates

Ω̇1 = 0

Ω̇2 = 0

Ω̇3 = ω̇21 =
2π2b sin 2π( tT −

X1
L )

LT + 2πaT sin 2π( tT −
X1
L )

.

Solution 2.5

1) With the definition of the deformation gradient tensor (B2.67), we
write

Fij =
∂xi
∂Xj

=

 1 a 0
a 1 0
0 0 1

 .

As tensor F is independent of X, the deformation is homogeneous.
As detF 6= 1, this deformation is not isochoric, as we will notice in
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chapter 3, (cf. (B3.38)). For the transformation to be invertible, it is
necessary to verify the inequalities (B2.69). This implies −1 < a <
+1.

2) One calculates successively :
the right Cauchy-Green deformation tensor

C = F TF =

 1 + a2 2a 0
2a 1 + a2 0
0 0 1


the Green-Lagrange deformation tensor

E =
1

2
(C − I) =

 a2

2 a 0

a a2

2 0
0 0 0


the gradient of the displacement vector

∇u = F − I =

 0 a 0
a 0 0
0 0 0


the infinitesimal deformation tensor

ε =
1

2
(∇u+∇uT ) =

 0 a 0
a 0 0
0 0 0

 .

With the hypothesis
a << 1

the tensors C,E, ε become

C =

 1 + a2 2a 0
2a 1 + a2 0
0 0 1

 '
 1 2a 0

2a 1 0
0 0 1


E =

1

2
(C − I) =

 0 a 0
a 0 0
0 0 0

 = ε .

3) The unit eigenvectors of C are given by the relation (B2.110). Let’s
express the vectors oriented in direction x3 and the diagonals AH
and DE. One has

A1 = α(x1 + x2)

A2 = β(x1 − x2)

A3 = γx3 .
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By (B2.120), one has

CAi = λ2iAi (no summation on i)

and therefore, one evaluates successively

CA1 =

 1 + a2 2a 0
2a 1 + a2 0
0 0 1

 α
α
0

 = (1 + a)2

 α
α
0


= (1 + a)2A1

CA2 =

 1 + a2 2a 0
2a 1 + a2 0
0 0 1

 β
−β
0

 = (1− a)2

 β
−β
0


= (1− a)2A2

CA3 =

 1 + a2 2a 0
2a 1 + a2 0
0 0 1

 0
0
γ

 =

 0
0
γ

 = A3 .

The eignevaleurs of C are

λ21 = (1 + a)2

λ22 = (1− a)2

λ23 = 1

By the spectral representation C, one writes

C = λ2i (Ai ⊗Ai) = λ21(A1 ⊗A1) + λ22(A2 ⊗A2) + λ23(A3 ⊗A3) .

One has

A1 ⊗A1 =

 α
α
0

⊗
 α

α
0

 =

 α2 α2 0
α2 α2 0
0 0 0

 =

 1
2

1
2 0

1
2

1
2 0

0 0 0



A2⊗A2 =

 β
−β
0

⊗
 β
−β
0

 =

 β2 −β2 0
−β2 β2 0

0 0 0

 =

 1
2 −1

2 0
−1

2
1
2 0

0 0 0



A3 ⊗A3 =

 0
0
γ

⊗
 0

0
γ

 =

 0 0 0
0 0 0
0 0 γ2

 =

 0 0 0
0 0 0
0 0 1

 .
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One verifies

[C] = (1 + a)2 ×

 α2 α2 0
α2 α2 0
0 0 0

+ (1− a)2 ×

 β2 −β2 0
−β2 β2 0

0 0 0


+ 1×

 0 0 0
0 0 0
0 0 γ2

 =

= (1 + a)2 ×

 1
2

1
2 0

1
2

1
2 0

0 0 0

+ (1− a)2 ×

 1
2 −1

2 0
−1

2
1
2 0

0 0 0


+ 1×

 0 0 0
0 0 0
0 0 1

 =

 1 + a2 2a 0
2a 1 + a2 0
0 0 1

 .

By (B.2.109), one obtains easily

[U ] =

 1 a 0
a 1 0
0 0 1

 = [F ] .

4) R = FU−1 = FF−1 = I .

Solution 2.6

For the right Cauchy-Green tensor, one carries out the algebra

C = F TF ; C∗ = F ∗TF ∗; F ∗ = QF ; F ∗T = F TQT = F TQ−1

C∗ = F TQTQF = F T IF = F TF = C .

For the Green-Lagrange tensor, one finds

2E = C − I; C∗ = C

2E∗ = 2E ⇒ E∗ = E .

For the left Cauchy-Green tensor, one obtains

c = FF T ; c∗ = F ∗F ∗T ; F ∗ = QF ; F ∗T = F TQT = F TQ−1

c∗ = F ∗F ∗T = QFF TQT = QcQT .

As a consequence, c is spatially objective. For the Euler-Almansi tensor,
one verifies

2e∗ = I − c∗−1; Q−T = Q; Q−1 = QT

2e∗ = I − c∗−1 = QIQT −Q−Tc−1Q−1 = 2QeQT .



24 Kinematics of continuous media

Solution 2.7

With (B2.205) and the orthogonality of R, one has

F ∗ = QF and RTR = I .

By the polar decomposition theorem (B1.132), one writes

F = RU = V R; F ∗ = R∗U∗ = V ∗R∗ = QF

R∗U∗ = QRU

R∗ = QRUU∗−1 .

This relation is trivially satisfied if we set R∗ = QR and thus U∗ = U .
Similarly one has successively

V ∗R∗ = QV R

and thus,

V ∗ = QV RR∗−1 = QV (RRTQT ) = QV QT .

Solution 2.8

With the help of (B2.88), (B2.91), (B2.179) and (B2.180), one has

2E = C − I; C = F TF ; Ḟ = LF ; 2d = L+LT .

Therefore, one finds successively

Ė =
Ċ

2

Ċ = F T Ḟ + Ḟ TF = F TLF + F TLTF = F T (L+LT )F = 2F TdF

Ė = F TdF .

Solution 2.9

The motion described by the relations

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3 ,

leads to the deformation gradient tensor defined by (B2.67)

Fij =
∂xi
∂Xj
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as the diagonal tensor

Fij =

 λ1 0 0
0 λ2 0
0 0 λ3

 .

The matrix of the right Cauchy-Green deformation tensor is

[C] = [F ]T [F ] =

 λ1 0 0
0 λ2 0
0 0 λ3

 λ1 0 0
0 λ2 0
0 0 λ3


=

 λ21 0 0
0 λ22 0
0 0 λ23


and the matrix of the right Green-Lagrange deformation tensor given by

[E] =
1

2
([C]− [I]) =

1

2

 λ21 − 1 0 0
0 λ22 − 1 0
0 0 λ23 − 1

 .

By (B2.88)
C = U2

one finds

[U ] =

 λ1 0 0
0 λ2 0
0 0 λ3


and thus, {

[F ] = [U ]

[F ] = [R][U ]

and
[R] = [I] .

Solution 2.10

With (B2.91) and (B2.92), one has

2E = F TF − I and 2e = I − F−TF−1 .

The last relation is multiplied left by F−TF T (= I) and right by FF−1

to obtain successively

2e = F−T (F T (I − F−TF−1)F )F−1

= F−T (F TF − F TF−TF−1F )F−1

= F−T (F TF − I)F−1

= 2F−TEF−1 .
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By the polar decomposition theorem, one has

F T = UTRT = URT .

By definition (B2.89), one gets

c = FF T = RUURT = RU2RT = RCRT .

Solution 2.11

We recall relation (B2.108)

UAi = λiAi .

With (B2.112) one finds

RUAi = λiRAi; FAi = λibi .

With (B2.109)

U =

3∑
i=1

λiAi ⊗Ai ,

we find

RU =
3∑
i=1

λi(RAi)⊗Ai et F =
3∑
i=1

λibi ⊗Ai .

Solution 2.12

Equation (B2.106) can be written as F Tnds = JNdS or Fjinjds =
JNidS.

Introduce (B2.147) in this relation to obtain

(δji +O(ε))njds = (1 +O(ε))NidS , (2.1)

which yields

nids ≈ NidS . (2.2)

2.13

Lengthy solution.
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(a) Use (B2.77), (B2.70), (B2.88) and (B2.120) to obtain

FmiFmj =

(
δmi +

∂Um
∂Xi

)(
δmj +

∂Um
∂Xj

)
= δmiδmj + δmi

∂Um
∂Xj

+ δmj
∂Um
∂Xi

+ δmiδmj
∂Um
∂Xj

∂Um
∂Xi

= δij +

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
+
∂Ui
∂Xj

∂Uj
∂Xi

= δij +

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
+O(ε2)

Then one evaluates

Uij = (FmiFmj)
1/2 =

(
δij +

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
+
∂Ui
∂Xj

∂Uj
∂Xi

)1/2

≈ δij +
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
+O(ε2)

≈ δij + εij +O(ε2) .

In the last relation we used (1 + a)n ≈ 1 + na for a� 1. Therefore

U ≈ I + ε .

(b) It is easy to show that

U−1kj = δkj −
1

2

(
∂Uk
∂Xj

+
∂Uj
∂Xk

)
+O(ε2)

is the inverse of Uij , i.e. UikU
−1
kj ≈ δij .

Then use (B2.73) as follows

Rij = FikU
−1
kj =

(
δik +

∂Ui
∂Xk

)(
δkj −

1

2

(
∂Uk
∂Xj

+
∂Uj
∂Xk

)
+O(ε2)

)
= δij −

1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
+O(ε2) +

∂Ui
∂Xj

− 1

2

∂Ui
∂Xk

(
∂Uk
∂Xj

+
∂Uj
∂Xk

)
+O(ε2)

= δij −
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

− 2
∂Ui
∂Xj

)
+O(ε2)

− 1

2

∂Ui
∂Xk

(
∂Uk
∂Xj

+
∂Uj
∂Xk

)
+O(ε2)

= δij +
1

2

(
∂Ui
∂Xj

− ∂Uj
∂Xi

)
− 1

2

∂Ui
∂Xk

(
∂Uk
∂Xj

+
∂Uj
∂Xk

)
+O(ε2)

= δij + ωij +O(ε2) .
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Therefore
R ≈ I + ω .

Short version

(a) Use (B2.77), (B2.70), (B2.88) and (B2.120) to obtain

FmiFmj =

(
δmi +

∂Um
∂Xi

)(
δmj +

∂Um
∂Xj

)
= δmiδmj + δmi

∂Um
∂Xj

+ δmj
∂Um
∂Xi

+ δmiδmj
∂Um
∂Xj

∂Um
∂Xi

≈ δij +

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
Then we evaluate

Uij = (FmiFmj)
1/2 =

(
δij +

(
∂Ui
∂Xj

+
∂Uj
∂Xi

))1/2

≈ δij +
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
≈ δij + εij

In the last relation we used (1 + a)n ≈ 1 + na for a� 1. Therefore

U ≈ I + ε .

(b) It is easy to show that

U−1kj = δkj −
1

2

(
∂Uk
∂Xj

+
∂Uj
∂Xk

)
+O(ε2)

is the inverse of Uij , i.e. UikU
−1
kj ≈ δij .

Then use (B2.73) as follows

Rij = FikU
−1
kj =

(
δik +

∂Ui
∂Xk

)(
δkj −

1

2

(
∂Uk
∂Xj

+
∂Uj
∂Xk

))
≈ δij −

1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
+
∂Ui
∂Xj

≈ δij −
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

− 2
∂Ui
∂Xj

)
= δij +

1

2

(
∂Ui
∂Xj

− ∂Uj
∂Xi

)
= δij + ωij

to obtain
R ≈ I + ω .
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Solution 2.14

Relation (B2.157) is given by cos γ12 ∼= 2ε12, where γ12 is the angle
between two vectors initially (before deformation) orthogonal. The va-
riables εij are the components of the infinitesimal deformation tensor.
The components of vectors before and after the movement (or defor-
mation) are given by the following relations with reference to figure 2.1

e1

e2

e3

O

X2 , x2

X1 , x1

X3 , x3

R0

R

X

dx

x
dX

dy

dY

γ12

Figure 2.1 Modification of the angles between two vectors.

dX : (dX1, 0, 0)→ dx : (dx1, dx2, dx3) (2.3)

dY : (0, dY2, 0)→ dy : (dy1, dy2, dy3) . (2.4)

According to the body motion, one has from (B2.8)

dxi = dUi + dXi . (2.5)

We remplace dUi by the next expression (see top of p. 90 of the book)

dUi = εijdXj + ωijdXj .

To simplify the algebra, we assume that the infinitesimal rotations va-
nish. Thus

ωij = 0⇒ dUi = εijdXj .
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The relation (2.5) becomes, taking into account (2.3)

dxi = dXi + εijdXj = (δij + εij) dXj = (δi1 + εi1) dX1

and then

dx1 = (1 + ε11)dX1, dx2 = ε21dX1, dx3 = ε31dX1 .

Similarly, we obtain for segment dy

dyi = dYi + εijdYj = (δij + εij) dYj = (δi2 + εi2) dY2

and then

dy1 = ε12dY2, dy2 = (1 + ε22)dY2, dy3 = ε32dY2 .

By (B2.157), one writes

cos γ12 =
dx · dy
‖dx‖ ‖dy‖

=
(1 + ε11)ε12 + (1 + ε22)ε21 + ε31ε32[

(1 + ε11)2 + ε221 + ε231
]1/2 [

ε212 + (1 + ε22)2 + ε232
]1/2

=
ε12 + ε11ε12 + ε21 + ε21ε22 + ε31ε32[

1 + ε211 + 2ε11 + ε221 + ε231
]1/2 [

ε212 + 1 + ε222 + 2ε22 + ε232
]1/2 .

Neglecting the terms of order greater than 1 (products of components
εij) and taking into account the symmetry εij = εji, one obtains (B2.157)

cos γ12 =
dx · dy
‖dx‖ ‖dy‖

≈ 2ε12

[1 + 2ε11]
1/2 [1 + 2ε22]

1/2
≈ 2ε12

(1 + ε11) (1 + ε22)

≈ 2ε12 (1− ε11) (1− ε22) = 2ε12 (1− ε11 − ε22 − ε11ε22) ≈ 2ε12 .

Thus we have

cos γ12 = 2ε12

and consequently

cos γ12 = sinϕ12 ≈ ϕ12 = 2ε12 ,

as γ12 + ϕ12 = π/2.
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O x1, u1dx1

dx2

β

x1

x2

x2, u2

u1

u2

θ2

θ1
1

1
1

u dx
dx
∂

2
1

1

u dx
dx
∂

2
2

2

u dx
dx
∂

A

C

B

D

Aꞌ

Cꞌ

Bꞌ

Dꞌ

1
2

2

u dx
dx
∂

Figure 2.2 Deformation of an infinitesimal element.

Solution 2.15

Let ABCD be an infinitesimal element with sides dx1 dx2 given in
figure 2.2 (B2.23 in the book).

As angle θ1 is small, we have the approximation

tan θ1 ≈ θ1

Inspecting figure 2.2, we find

θ1 =
∂u2
∂x1

dx1

dx1 + ∂u1
∂x1

dx1

and thus

θ1 =
∂u2
∂x1

.

By a similar line of reasoning, one has

θ2 =
∂u1
∂x2

.

We know that

θ1 + θ2 = φ12 =
π

2
− γ12 .
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Consequently, one finds

cos γ12 = sinφ12 = sin(θ1 + θ2) ≈ θ1 + θ2 =
∂u2
∂x1

+
∂u1
∂x2

= 2ε12 .

By the definition of the relative extension (B2.153), we write

ε11 =
A′B′ −AB

AB
=
A′B′ − dx1

dx1

and

ε22 =
A′D′ −AD

AD
=
A′D′ − dx2

dx2
.

Next we obtain the relations

(A′B′)2 = (dx1(1 + ε11))
2 =

(
dx1 +

∂u1
∂x1

dx1

)2

+

(
∂u2
∂x1

dx1

)2

dx21(ε
2
11 + 2ε11 + 1) = dx21

(
1 + 2

∂u1
∂x1

+

(
∂u1
∂x1

)2

+

(
∂u2
∂x1

)2
)

2ε11 ≈ 2
∂u1
∂x1

.

Thus

ε11 ≈
∂u1
∂x1

and for (A′D′) one has

ε22 ≈
∂u2
∂x2

.

Solution 2.16

By relation (B2.80), within the framework of small deformations,
one has

ds2 − dS2 = 2EijdXidXj ≈ 2εijdxidxj .

1)

dx1 = 1, dx2 = dx3 = 0

ds2 − dS2 = 2ε11dx
2
1 = 4.10−3

dS = dx1 = 1⇒ ds2 = 1 + 4.10−3 ⇒ ds = 1.002

⇒ ds− dS = 1.002− 1 = 0.002
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2)
dx2 = 1, dx1 = dx3 = 0

ds2 − dS2 = 2ε22dx
2
2 = 4.10−3

dS = dx2 = 1⇒ ds2 = 1 + 4.10−3 ⇒ ds = 1.002

⇒ ds− dS = 1.002− 1 = 0.002

3)

dx1 = dx2 = 1 ·
√

2

2
, dx3 = 0

ds2 − dS2 = 2ε11dx
2
1 + 2ε22dx

2
2 + 2 · 2ε12dx1dx+2

= (2 · 2 + 2 · 2 + 2 · 2 · 1) · 10−3
√

2

2

√
2

2
= 6 · 10−3

dS = 1⇒ ds2 = 1 + 6 · 10−3 ⇒ ds = 1.003

⇒ ds− dS = 1.003− 1 = 0.003

We may also use (B2.153) to get

εN =
ds− dS
dS

= 0.003⇒ ds− dS = 0.003 · dS = 0.003

Solution 2.17

Let PQ = dS and pq = ds the lengths given on figure 2.3. By
(B2.151), one has

ds2 = dS2 + 2εijdxidxj .

In two dimensions, one writes

ds2 = dS2 + 2ε11dx
2
1 + 2ε22dx

2
2 + 4ε12dx1dx2 .

This last relation yields

ds2 − dS2

dS2
= 2ε11

dx21
dS2

+ 2ε22
dx22
dS2

+ 4ε12
dx1dx2
dS2

. (2.6)

Let us set

εN =
ds− dS
dS

.

The left hand side of (2.6) becomes

ds2 − dS2

dS2
=

ds2

dS2
− 1 =

(
ds

dS
− 1 + 1

)2

− 1 =

(
ds− dS
dS

+ 1

)2

− 1

= (εN + 1)2 − 1 = ε2N + 2εN . (2.7)
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O

x2

x1

Q

dx1

dx2 P

q

p θ
N

Figure 2.3 Deformation of a linear element.

In the case of small deformation, we allow that

ε2N → 0 . (2.8)

Referring to figure 2.3, we define

cos θ =
dx1
dS

and sin θ =
dx2
dS

. (2.9)

Combining (2.6) and (2.7) and using (2.8) and (2.9), we eventually obtain

εN = ε11 cos2 θ + ε22 sin2 θ + 2ε12 cos θ sin θ .

Utilizing trigonometric identities the last expression becomes

εN =
ε11 + ε22

2
+
ε11 − ε22

2
cos 2θ + 2ε12 sin 2θ .

In a direction normal to N , one has

εN+π/2 =
ε11 + ε22

2
+
ε11 − ε22

2
cos 2(π/2 + θ) + 2ε12 sin 2(π/2 + θ)

εN+π/2 =
ε11 + ε22

2
− ε11 − ε22

2
cos 2θ − 2ε12 sin 2θ .



Chapitre 3

Dynamics of continuous media

Solution 3.1

Incompressibility (B3.45) requires ∇ · v = 0. Applying ∂/∂xi to the
velocity field, one has

∂vi
∂xi

=
Ar3δii − 3Ar2xi

∂r
∂xi

r6

=
Ar3δii − 3Ar2xi

xi
r

r6

= 0

since xixi = r2.

It is also possible to solve the problem by computing

div v =
∂vi
∂xi

= A
∂

∂xi

(
xi(xjxj)

−3/2
)

= A

(
δii(xjxj)

−3/2 − 3

2
xi · 2(xjxj)

−5/2xjδji

)
= A

(
δii(xjxj)

−3/2 − 3

2
xj · 2(xjxj)

−5/2xj

)
= 0 ,

as δii = 3.

Solution 3.2

The mass conservation equation (B3.53) gives

Dρ

Dt
= −ρ∇ · v = −ρ∂vi

∂xi
= −ρ

(
3

1 + t

)
.

Integrating from the initial time t = 0 till the present time t, one obtains∫ ρ

ρ0

dρ′

ρ′
= −3

∫ t

0

dt′

1 + t′
,
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giving then
ρ

ρ0
=

1

(1 + t)3
. (3.1)

Let us calculate the trajectoires linked to the velocity field (B2.35). One
has

dxi = vidt =
xi

(1 + t)
dt .

Integrating this relation from the initial time t = 0 till the actual time t∫ xi

Xi

dx′i
x′i

=

∫ t

0

dt′

1 + t′
,

yields

ln
xi
Xi

= ln(1 + t)

and thus

x1 = X1(1 + t), x2 = X2(1 + t), x3 = X3(1 + t)

x1x2x3 = X1X2X3(1 + t)3 . (3.2)

The combination of (3.1) and (3.2) results in the relation ρ x1x2x3 =
ρ0X1X2X3.

Solution 3.3

The incompressibility equation in cylindrical coordinates (BA.2) is
written as

1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

+
∂vz
∂z

= 0 .

It is easily deduced that the given velocity field is incompressible.

Solution 3.4

1) With the matrix [σ]

[σ] =

 0 Cx1 0
Cx1 0 −Cx2

0 −Cx2 0


the static equilibrium equation (B3.126) gives

f1 = −σ1j,j = 0

f2 = −σ2j,j = −C
f3 = −σ3j,j = C .
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2) The normal vector to the plane given by surface f(xi) = 0, at point
P of coordinates xP = (4,−4, 7) is defined by its gradient

n(xP ) =
∇f(xP )

‖∇f(xP )‖

= (2, 2,−1)T
1

(22 + 22 + 1)
1
2

=

=
1

3
(2, 2,−1)T .

For the plane, the stress vector at point P becomes

[t]plane = [σ][n] =
1

3

 0 4C 0
4C 0 4C
0 4C 0

 2
2
−1


=

1

3

 8C
8C − 4C

8C

 =
1

3

 8C
4C
8C

 .

The normal vector on the sphere at point P is

n(xP ) =
∇f(xP )

‖∇f(xP )‖

= (2x1, 2x2, 2x3)
T 1

((2x1)2 + (2x2)2 + (2x3)2)
1
2

=

= (x1, x2, x3)
T 1

((x1)2 + (x2)2 + (x3)2)
1
2

=

= (4,−4, 7)T
1

(16 + 16 + 49)
1
2

=

=
1

9
(4,−4, 7)T .

The stress vector on the sphere at point P is

[t]S = [σ][n] =
1

9

 0 4C 0
4C 0 4C
0 4C 0

 4
−4
7


=

1

9

 −16C
16C + 28C
−16C

 =
1

9

 −16C
44C
−16C

 .

3) the principal stresses at point P are the eigenvalues of tensor σ(P )
obtained solving (B3.111) :

det(σ(P )− λI) = 0 ,
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where λ = σ.
With the definition of invariants (B1.121), one obtains 0 4C 0

4C 0 4C
0 4C 0

 , I1 = 0, I2 = −32C2, I3 = 0

with
I2 = −4 · 4C2 − 4 · 4C2 = −32C2 .

The characteristic equation (B1.123) written for matrix [σ] becomes

λ3 − 32C2λ = 0 ,

or
λ
(
λ2 − 32C2

)
= 0 .

The first solution is λ = σ2 = 0. The other solutions are given by

λ2 = 32C2 ,

or
σ1,3 = ± |C|

√
32 .

For simplicity, the convention σ1 > σ2 > σ3 is adopted.
The maximum shear stress is : [τ · σn]max = (σ1 − σ3)/2 = C

√
32,

where τ is the tangent vector in P .
The deviatoric part of σ is by definition σdij = σij− (σkk/3)δij . As in
our case, the trace of σ is zero, the given stress tensor is identical to
the deviatoric tensor and the principal deviatoric stresses are equal
to the principal stresses.

Solution 3.5

In absence of body forces, the equilibrium equation is written as

σij,j = 0 .

When applied to (B3.166), one has

σ11,1 + σ12,2 + σ13,3 = 8x1 + 8x2 − 8x1 − 8x2 = 0

σ21,1 + σ22,2 + σ23,3 = −x1
2
− 8x2 +

x1
2

+ 8x2 = 0

σ31,1 + σ32,2 + σ33,3 = 0 .

The given stress field satisfies equilibrium.
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Solution 3.6

The body B is in equilibrium if the total force and the total moment
are both equal to zero.

Equilibrium of forces

We write the equation with pressure P in the component F1 of the
force. Then, we use the divergence theorem to obtain (as P = cst)

F1 = −
∫
∂ω

(Pn1 + 0n2 + 0n3)ds = −
∫
ω

∂P

∂x1
dv = 0 .

Similarly, one obtains F2 = F3 = 0. Thus, the equilibrium of forces is
satisfied.

Equilibrium of moments

The moment with respect to the origin O of the force generated by
the pressure, at point x is

M(O) =

∫
∂ω
OM × (−Pn)ds = −P

∫
∂ω
OM × nds

OM × n =

∣∣∣∣∣∣
e1 e2 e3
x1 x2 x3
n1 n2 n3

∣∣∣∣∣∣
= e1(x2n3 − x3n2)− e2(x1n3 − x3n1) + e3(x1n2 − x2n1) .

The first component of moment is expressed as

M1(O) = −Pe1
∫
∂ω

(x2n3 − x3n2)ds

= −Pe1
∫
∂ω

(
0 −x3 x2

) n1
n2
n3

 ds .

Appying the divergence theorem to this last expression, one obtains

M1(O) = −Pe1
∫
∂ω

(
0 −x3 x2

) n1
n2
n3

 ds

= −Pe1
∫
ω

(
∂0

∂x1
− ∂x3
∂x2

+
∂x2
∂x3

)
ds = 0 .

Similarly, one obtains M2(O) = M3(O) = 0.

Thus the moment is also equal to zero. The solid body is in equili-
brium.
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Solution 3.7

Equation (B3.111) gives

det([σ]− λ[I]) = 0

Applied to (B3.167), one obtains∣∣∣∣∣∣
 p− λ p p

p p− λ p
p p p− λ

∣∣∣∣∣∣ = 0

or via (B1.120)
−λ3 + I1λ

2 − I2λ+ I3 = 0 . (3.3)

The invariants (B1.121) are

I1 = 3p

I2 =

∣∣∣∣ p p
p p

∣∣∣∣+

∣∣∣∣ p p
p p

∣∣∣∣+

∣∣∣∣ p p
p p

∣∣∣∣ = 0

I3 =

∣∣∣∣∣∣
p p p
p p p
p p p

∣∣∣∣∣∣ = 0

Equation (3.3) becomes

−λ3 + 3pλ2 = 0

yielding 
σ1 = 3p

σ2 = 0

σ3 = 0

The resulting stress state is one of uniform traction (p is supposed such
that p > 0).

Applying (B3.111) to (B3.168), one has∣∣∣∣∣∣
p− λ p p
p p− λ p
p p −2p− λ

∣∣∣∣∣∣ = 0

The invariants are I1 = 0, I2 = −6p2, I3 = 0. Equation (3.3) gives

λ(6p2 − λ2) = 0
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One finds 
σ1 =

√
6p

σ2 = 0

σ3 = −
√

6p

This is a simple shear stress state because the two principal stresses are
equal and opposite.

Applying (B3.111) to (B3.169), one has∣∣∣∣∣∣
0− λ p p
p 0− λ p
p p 0− λ

∣∣∣∣∣∣ = 0

The invariants are
I1 = 0

I2 =

∣∣∣∣ 0 p
p 0

∣∣∣∣+

∣∣∣∣ 0 p
p 0

∣∣∣∣+

∣∣∣∣ 0 p
p 0

∣∣∣∣ = −3p2

I3 =

∣∣∣∣∣∣
0 p p
p 0 p
p p 0

∣∣∣∣∣∣ = 2p3

Equation (3.3) becomes

−λ3 + 3p2λ+ 2p3 = 0

that can be decomposed as

(λ− 2p)(λ+ p)2 = 0

The principal stresses are {
σ1 = 2p

σ2 = σ3 = −p

The resulting stress state is a three-dimensional stress state.

Solution 3.8

By the deviatoric tensor definition (B3.123), one has

sij = σij −
1

3
δijσkk = σij −

1

3
δijI1(σ) . (3.4)

The characteristic equation is given by (B1.123)

s3 − I1(s)s2 + I2(s)s− I3(s) = 0 .
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With (3.4), one has for the first invariant

I1(s) = sii = σii −
1

3
δiiσkk = σii −

1

3
3σkk = 0 .

Thus
s3 + I2(s)s− I3(s) = 0 .

In the literature, the next form is used

s3 − I2(s)s− I3(s) = 0

with

I2(s) = −1

2
(siisjj − sijsji) , I3(s) = det s .

The first relation is none other than (B3.171).

One writes successively

I2(s) =
1

2
sijsji =

1

2

(
σij −

1

3
δijσkk

)(
σij −

1

3
δijσkk

)
=

1

2

(
σijσij −

1

3
δijσijσkk −

1

3
δijσijσkk +

1

9
δijδijσnnσkk

)
=

1

2

(
σijσij −

1

3
σjjσkk −

1

3
σjjσkk +

1

3
σnnσkk

)
=

1

2

(
σijσij −

1

3
σjjσkk

)
.

Using (B3.116) to replace σijσij we obtain

I2(s) =
1

2

(
−2I2(σ) + I21 (σ)− 1

3
I21 (σ)

)
= +

1

2

(
−2I2(σ) +

2

3
I21 (σ)

)
=

1

3
I21 (σ)− I2(σ) . (B3.171)

For the third invariant, we proceed as follows (cf. (B3.118))

I3(s) = s1s2s3 =

(
σ1 −

1

3
I1(σ)

)(
σ2 −

1

3
I1(σ)

)(
σ3 −

1

3
I1(σ)

)
= σ1σ2σ3 −

1

3
I1(σ) (σ1σ2 + σ2σ3 + σ3σ1)

+
1

9
I21 (σ) (σ1 + σ2 + σ3)−

1

27
I31 (σ)

= I3(σ)− 1

3
I1(σ)I2(σ) +

1

9
I31 (σ)− 1

27
I31 (σ)

=
2

27
I31 (σ)− 1

3
I1(σ)I2(σ) + I3(σ) . (B3.172)
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Solution 3.9

Through the divergence theorem the surface integral is converted
into a volume integral∫

∂ω
Pij...σpqnq ds =

∫
ω

∂(Pij...σpq)

∂xq
dv

=

∫
ω
[σpqPij...,q + Pij...σpq,q]dv .

Replacing ∇ · σ in this last relation by its expression produced by the
momentum conservation law (B3.96), one obtains (B3.173).

Solution 3.10

The first Piola-Kirchhoff stress tensor is defined by the relation
(B3.141) :

P = JσF−T .

Multiplying (B3.141) right by F T , one has

PF T = JσF−TF T = Jσ .

The transpose of (B3.141) gives

P T = JF−1σT .

Multiplying left this last equation by F , one finds

FP T = JFF−1σT = JσT = Jσ

and thus

PF T = FP T . (B3.144)

Solution 3.11

Equations (B3.149) and (B2.205) give

P ∗ = QP ; F ∗ = QF .

Equation (B3.152) yields

S = F−1P ⇒ P = FS .

Therefore, one has

P ∗ = F ∗S∗ ⇒ QP = QFS∗ ⇒ QTQP = P = FS∗ .
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However, by definition,
P = FS .

Consequently,
FS = FS∗ ,

that leads to the result
S = S∗ .

For the symmetry case, one has successively

S = JF−1σF−T ⇒ ST = J(F−T )TσT (F−1)T = JF−1σTF−T

and since
σ = σT ⇒ S = ST .



Chapitre 4

Energetics

Solution 4.1

With Reynolds transport theorem (B3.23) and the continuity equa-
tion (B3.41), one has

d

dt

∫
w
ρQdv =

∫
w

(
D(ρQ)

Dt
+ ρQ

∂vm
∂xm

)
dv

=

∫
w

(
Dρ

Dt
Q+ ρ

DQ

Dt
+ ρQ

∂vm
∂xm

)
dv

=

∫
w

(
ρ
DQ

Dt
+Q

(
Dρ

Dt
+ ρ

∂vm
∂xm

))
dv

=

∫
w
ρ
dQ

Dt
dv .

Let us calculate the material derivative of the kinetic energy Ek

DEk
Dt

=
d

dt

∫
ω
ρ
(v · v

2

)
dv =

∫
ω
ρ
D

Dt

(v · v
2

)
dv =

∫
ω
ρa · v dv .

Replacing ρa by the expression from (B3.96) one obtains equation
(B4.26).

Solution 4.2

By the definition of the kinetic energy (B4.1) and the internal energy
(B4.2), one has

D

Dt
(Ek(t) + Eint(t)) =

D

Dt

∫
ω
ρ
(v · v

2
+ u
)
dv .
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Applying Reynolds theorem (B3.23) we are left with the following de-
velopment

D

Dt

∫
ω
ρ
(v · v

2
+ u
)
dv =∫

ω
[
D

Dt

(
ρ
(v · v

2
+ u
))

+ ρ
(v · v

2
+ u
)
∇ · v]dv

=

∫
ω
[
(v · v

2
+ u
)(Dρ

Dt
+ ρ∇ · v

)
+ ρ

D

Dt

(v · v
2

+ u
)

]dv .

The expression in the second term between parentheses of the last re-
lation is the mass conservation (B3.41). As a consequence, this term
vanishes. One finds

D

Dt

∫
ω
ρ
(v · v

2
+ u
)
dv =

∫
ω
ρ

(
v · Dv

Dt
+
Du

Dt

)
dv .

As Dv/Dt is equal to a, the problem is solved.

If we keep the material derivative of v, we may write∫
ω
ρ

(
v · Dv

Dt
+
Du

Dt

)
dv =

∫
ω
ρ

(
D(v · v)

2Dt
+
Du

Dt

)
dv

=

∫
ω
ρ
D

Dt
(
v · v

2
+ u)dv .

This shows that the material derivative of the integral over a material
volume of a quantity equal to ρ times an expression is written in general
form as the integral over a material volume of ρ times the material deri-
vative of this expression. This statement constitutes a general theorem.

Solution 4.3

1) Inequation (B4.81) is given by

d

dt

∫
ω
ρsdv ≥

∫
ω

r

T
dv −

∫
∂ω

q · n
T

ds .

Using the result of the previous exercise, the left hand side becomes

d

dt

∫
ω
ρsdv =

∫
ω
ρ
Ds

Dt
dv .

By the divergence theorem (B1.228), the surface integral of (B4.81)
becomes ∫

∂ω

qknk
T

ds =

∫
ω

∂

∂xk

(qk
T

)
dv .
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Applying the localisation principle one obtains

ρ
Ds

Dt
≥ r

T
− div

( q
T

)
. (4.1)

2) With the equations (B4.23) and (B4.25), one has

ρ
Du

Dt
− σ : d+ div q = r . (4.2)

Employing the index notation, it is easily shown that

div
( q
T

)
=

1

T
div q − q ·∇T

T 2
. (4.3)

Bringing (4.2) and (4.3) in (4.1), we find Clausius-Duhem inequality

ρ
Ds

Dt
≥ 1

T

(
ρ
Du

Dt
− σ : d

)
+

1

T 2
q ·∇T . (B4.83)

3) If we introduce the Helmholtz specific free energy ,

f = u−Ts , (B4.84)

the Clausius-Duhem inequality (B4.83) is rewritten as

ρ
Df

Dt
≤ tr(σL)−ρsDT

Dt
−q ·∇T

T
. (B4.85)

Solution 4.4

1) The principle of internal energy conservation is given by the relations
(B4.23) and (B4.25)

ρ
Du

Dt
= σ : d− div q + r . (4.4)

For a perfect fluid, the term σ : d becomes −p trd = −p∇ · v.

2) Substituting the enthalpy definition in (4.4), one has

ρ
Dh

Dt
− ρ D

Dt

(
p

ρ

)
= −p∂vi

∂xi
− ∂qi
∂xi

+ r . (4.5)

The development of the term D
Dt

(
p
ρ

)
gives

D

Dt

(
p

ρ

)
=

1

ρ

Dp

Dt
− p

ρ2
Dρ

Dt
.
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Substituting this result in (4.5), one finds

ρ
Dh

Dt
=
Dp

Dt
− p

ρ

Dρ

Dt
− p∂vi

∂xi
− ∂qi
∂xi

+ r

=
Dp

Dt
− p

ρ

(
Dρ

Dt
+ ρ

∂vi
∂xi

)
− ∂qi
∂xi

+ r

=
Dp

Dt
− ∂qi
∂xi

+ r ,

where we have used the mass conservation law (B3.41).

3) If moreover, the flow is adiabatic, i. e. q = 0 and r = 0, one has

ρ
Dh

Dt
=
Dp

Dt
.

Solution 4.5

As rigid body rotation implies by (B4.61) c = 0, it follows that
ċ = 0. By (B2.211) and taking (B4.63) into account one has in

v∗ = ċ+ Q̇x+Qv = Qv + Ωx .

With (B2.60), one finds

v∗ = v + ω × x . (4.6)

The vector ω is the dual vector of Ω, that expresses the angular velocity
of rigid body rotation. We rewrite (B4.48)

ρu̇− σ :∇v + div q − r + v · (ρa− div σ − ρb)

+

(
1

2
v · v + u

)
(ρ̇+ ρdivv) = 0 , (4.7)

(where the notation ρ̇ designates the material derivative in Lagrangian
description), with starred quantities. We first replace v∗ by its value (4.6)
and from the resulting equation, we substract (4.7). Using the relations
(B4.49)-(B4.53), (B2.212), (B2.213), one obtains

−σ : Ω +
(ω × x) · (ω × x)

2
(ρ̇+ ρ divv) + (ω × x) · v(ρ̇+ ρ divv)

+ (ω × x) · (ρa− div σ − ρb) = 0 .

This must be true for any rigid body rotation and thus we deduce the
equations of mass and momentum conservation. The remaining term σ :
Ω must vanish. Due to the antisymmetric character of Ω, this imposes
the symmetry of σ.



Chapitre 5

Constitutive equations : basic

principles

Solution 5.1

The vector field u is spatially objective and satisfies relation (B2.197)

u∗ = Qu .

One has on the other hand that

(∇u)∗ij =
∂u∗i
∂x∗j

=
∂u∗i
∂xk

∂xk
∂x∗j

.

By (B2.195), one finds
∂x∗j
∂xk

= Qjk

and its inverse ∂xk/∂x
∗
j is Q−1kj = QTkj . Thus one has

(∇u)∗ij =
∂u∗i
∂x∗j

= Qil
∂ul
∂xk

QTkj

or

(∇u)∗ = Q∇uQT . (B5.61)

Solution 5.2

Through the relation (B2.213) and definitions (B2.181) and (B2.183)
of d and ω̇, respectively, and taking into account equation (B2.56)

Q̇QT +QQ̇
T

= 0 ,
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one writes successively

(L∗)T = Q(LTQT + Q̇
T

),

d∗ =
1

2
(L∗ + (L∗)T ) = Q

1

2
(L+LT )QT +

1

2
(Q̇QT +QQ̇

T
)

= QdQT ,

ω̇∗ =
1

2
(L∗ − (L∗)T ) = Q

1

2
(L−LT )QT +

1

2
(Q̇QT −QQ̇T

)

= Qω̇QT + Q̇QT .

Tensor d is spatially objective and tensor ω̇ is not. Indeed, if two obser-
vers record the rotation rate of a continuous media, their observations
differ by a quantity equal to their relative rotation rate.

Solution 5.3

Note first that D/Dt∗ = D/Dt. Tensor T being spatially objective,
if we take the material derivative, one obtains successively

DT ∗

Dt
=
D(QTQT )

Dt
=
DQ

Dt
TQT +Q

DT

Dt
QT +QT

DQT

Dt
.

This shows that the material derivative of a second order tensor is not
spatially objective.

Solution 5.4

With the help of results of problems 5.2 and 5.3, and relation (B2.56),
we write

Ṫ
∗

+ T ∗ω̇∗ − ω̇∗T ∗ = Q̇TQT +QṪQT +QTQ̇
T

+QTQT (Qω̇QT + Q̇QT ) − (Qω̇QT + Q̇QT )QTQT

= QṪQT +QTω̇QT −Qω̇TQT

= Q(Ṫ + T ω̇ − ω̇T )QT .

This shows that relation (B5.62) is spatially objective.

Solution 5.5

Equation (B5.64) is nothing else than problem 5.3 solved for T = d.
Therefore, taking (B2.56) into account, from (B2.213) and its transpose,
one has to within a factor 2

ḋ
∗

+ d∗L∗ +LT∗d∗ = Q̇dQT +QḋQT +QdQ̇
T

+ QdQT (QL+ Q̇)QT +Q(LTQT + Q̇
T

)QdQT

= QḋQT +QdLQT +QLTdQT .



Chapitre 6

Classical Constitutive Equations

Solution 6.1

Equation (B2.88) gives

C = F TF ,

from which we obtain via (B2.179)

Ċ = Ḟ
T
F + F T Ḟ = F TLTF + F TLF .

As for the simple fluid F = I, one finds

Ċ = LT +L = 2d .

Solution 6.2

Equation (B4.23) is

ρ
Du

Dt
= σ : (∇v)− div q + r .

The term σ : (∇v) with the constitutive equation (B6.14) becomes with
the help of (B4.25)

σ : L = σ : d = −p tr d+ λ(tr d)2 + 2µ(d : d) .

Thus, for the Newtonian viscous fluid, one obtains

ρ
Du

Dt
= −p tr d+ λ(tr d)2 + 2µ(d : d)− div q + r . (6.1)

The perfect fluid is inviscid, i.e. λ = µ = 0. One finds

ρ
Du

Dt
= −p tr d− div q + r .

If the perfect fluid is an ideal gas, then its internal energy is given by
relation (B6.143) and the previous equation becomes

ρcv
DT

Dt
= −p tr d− div q + r .
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Solution 6.3

The Newtonian viscous incompressible fluid satisfies the constraint
div v = tr d = 0. In this case, relation (6.1) yields

ρ
Du

Dt
= 2µ(d : d)− div q + r .

For the perfect fluid, one finds

ρ
Du

Dt
= −div q + r .

Solution 6.4

1) Relation (B2.108) shows thatU hasAi as eigenvectors. By (B2.109),
one writes the spectral decomposition

U =

3∑
i=1

λiAi ⊗Ai .

With (B2.88), one has successively

C = UU =

3∑
i=1

3∑
j=1

λi(Ai ⊗Ai)λj(Aj ⊗Aj) =

=
3∑
i=1

3∑
j=1

λiλj(Ai ⊗Ai)(Aj ⊗Aj) =

=

3∑
i=1

3∑
j=1

λiλjδij(Ai ⊗Ai) =

=
3∑
i=1

λ2i (Ai ⊗Ai) .

The isotropic hyperelastic material has for constitutive equation (B6.51)

S = 2
∂Ŵ(C)

∂C
.

With (B6.64), one obtains relation (B6.67) for ∂Ŵ(C)/∂C and fi-
nally, one has for (B6.68)

S =
3∑
i=1

1

λi

∂φ

∂λi
Ai ⊗Ai ,

which shows that S has Ai as eigenvectors.
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2) Relation (B2.111) shows that V has bi = RAi as eigenvectors. By
(B2.113), one writes the spectral decomposition

V =

3∑
i=1

λibi ⊗ bi .

With(B2.89), one has successively

c = V V =
3∑
i=1

3∑
j=1

λi(bi ⊗ bi)λj(bj ⊗ bj) =

=

3∑
i=1

3∑
j=1

λiλj(bi ⊗ bi)(bj ⊗ bj) =

=
3∑
i=1

3∑
j=1

λiλjδij(bi ⊗ bi) =

=

3∑
i=1

λ2i (bi ⊗ bi) .

This proves that c has bi as eigenvectors.
In section B6.5.1, after long developments, one obtains relation
(B6.72)

σ = J−1

(
3∑
i=1

λi
∂φ

∂λi
bi ⊗ bi

)
,

which shows that σ has bi as eigenvectors.

Solution 6.5

Relation (B6.61) multiplied left by F and right by F T gives

1

2
FSF T = I3

∂Φ

∂I3
FC−1F T +

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
FIF T − ∂Φ

∂I2
FCF T .

(6.2)
With the help of (B2.88) and (B2.89), one has

FC−1F T = FF−1F−TF T = I

and
FCF T = FF TFF T = cc = c2 .

Equation (6.2) taking (B3.152) into account becomes (B6.63)

σ = 2J−1
(
I3(c)

∂Φ

∂I3(c)
I +

(
∂Φ

∂I1(c)
+ I1(c)

∂Φ

∂I2(c)

)
c− ∂Φ

∂I2(c)
c2
)
.
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Solution 6.6

Relation (B6.61) is

S = 2

(
I3
∂Φ

∂I3
C−1 +

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
I − ∂Φ

∂I2
C

)
.

The Cayley-Hamilton equation (B1.123) applied to C gives

C3 − I1C2 + I2C − I3I = 0

and thus
I3C

−1 = C2 − I1C + I2I .

Combining it with (B6.61) one finds

S

2
=
∂Φ

∂I3

(
C2 − I1C + I2I

)
+

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
I − ∂Φ

∂I2
C

=

(
∂Φ

∂I1
+ I1

∂Φ

∂I2
+ I2

∂Φ

∂I3

)
I −

(
I1
∂Φ

∂I3
+
∂Φ

∂I2

)
C +

∂Φ

∂I3
C2 .

Relation (B6.63) is given by

σ = 2J−1
(
I3
∂Φ

∂I3
I +

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
c− ∂Φ

∂I2
c2
)
.

The Cayley-Hamilton equation (B1.123) applied to c gives

c3 − I1c2 + I2c− I3I = 0

and thus
c2 = I1c− I2I + I3c

−1 .

Combining it with (B6.63) one obtains

σ

2J−1
= I3

∂Φ

∂I3
I +

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
c− I1

∂Φ

∂I2
c+ I2

∂Φ

∂I2
I − I3

∂Φ

∂I2
c−1

σ = 2J−1
((

I2
∂Φ

∂I2
+ I3

∂Φ

∂I3

)
I +

∂Φ

∂I1
c− I3

∂Φ

∂I2
c−1
)
.

Solution 6.7

According to (B6.80), we can write

Φ(I1, I2, I3) = C000 + C100(I1 − 3) + C010(I2 − 3) + C001(I3 − 1)

+ C111(I1 − 3)(I2 − 3)(I3 − 1) + . . . .
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In the reference configuration, one has

λ1 = λ2 = λ3 = 1 or C = I

and then

I1 = 3, I2 = 3, I3 = 1 .

Consequently, one obtains

Φ(3, 3, 1) = C000 .

If C000 = 0, then the energy is zero, at the reference configuration.

The partial derivatives of Φ with respect to the invariants are

∂Φ

∂I1
= C100 + C111(I2 − 3)(I3 − 1) + . . .

∂Φ

∂I2
= C010 + C111(I1 − 3)(I3 − 1) + . . .

∂Φ

∂I3
= C001 + C111(I1 − 3)(I2 − 3) + . . .

Thus, at the reference configuration (B6.62) becomes

∂Φ

∂I1
+ 2

∂Φ

∂I2
+
∂Φ

∂I3
= C100 + 2C010 + C001 = 0 .

Solution 6.8

The first equality of (B6.59) gives with the help of (B1.144)

∂I1
∂C

=
3∑
i=1

∂(λ21 + λ22 + λ23)

∂λ2i
(ni ⊗ ni)

= n1 ⊗ n1 + n2 ⊗ n2 + n3 ⊗ n3

=
3∑
1

ni ⊗ ni

= I .
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The second equality of (B6.59) gives with the help of (B1.144)

∂I2
∂C

=
3∑
i=1

∂(λ22λ
2
3 + λ23λ

2
1 + λ21λ

2
2)

∂λ2i
(ni ⊗ ni)

= (λ22 + λ23)(n1 ⊗ n1) + (λ23 + λ21)(n2 ⊗ n2) + (λ21 + λ22)(n3 ⊗ n3)

= (λ21 + λ22 + λ23)(n1 ⊗ n1) + (λ21 + λ22 + λ23)(n2 ⊗ n2)

+ (λ21 + λ22 + λ23)(n3 ⊗ n3)

− λ21(n1 ⊗ n1)− λ22(n2 ⊗ n2)− λ23(n3 ⊗ n3)

= I1I −C .

Solution 6.9

The pressure in the inflated balloon is given by equation (B6.102)

pi(λ) = 4C10
ei
R

1

λ

(
1− 1

λ6

)
.

The maximum pressure is obtained when the derivative of p with respect
to the stretch ratio λ vanishes

∂pi(λ)

∂λ
= 0 .

One has
d

dλ

(
1

λ
− 1

λ7

)
= − 1

λ2
+

7

λ8
= 0

and thus

λ6 = 7⇒ λ =
6
√

7 = 1.383

pmaxi = 4C10
ei
R

1

1.383

(
1− 1

7

)
= 2.479

C10ei
R

.

Solution 6.10

The Ogden energy function is relation (B6.86)

φ(λ1, λ2, λ3) =
N∑
i=1

µi
αi

(λαi1 + λαi2 + λαi3 − 3) .

The principal stresses are given by relation (B6.78)

σk = −p+ λk
∂φ

∂λk
, k = 1, 2, 3 .
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Therefore, one writes

σ1 = −p+
N∑
i=1

µiλ
αi
1

σ2 = −p+

N∑
i=1

µiλ
αi
2

σ3 = −p+

N∑
i=1

µiλ
αi
3 .

– Case of uniaxial stretch : σ1 = σ, σ2 = σ3 = 0 and λ1 = λ, λ2 = λ3 =
λ−1/2 (incompressibility). One obtains due to these conditions :

σ = −
N∑
i=1

µiλ
−αi

2 +
N∑
i=1

µiλ
αi =

N∑
i=1

µi(λ
αi − λ

−αi
2 )

– Case of biaxial stretch : σ1, σ2 6= 0, σ3 = 0, λ3 = λ−11 λ−12 (incompres-
sibility). One obtains due to these conditions :

σ1 = −
N∑
i=1

µi(
1

λ1λ2
)αi +

N∑
i=1

µiλ
αi
1 =

N∑
i=1

µi(λ
αi
1 − ( 1

λ1λ2
)αi)

σ2 = −
N∑
i=1

µi(
1

λ1λ2
)αi +

N∑
i=1

µiλ
αi
2 =

N∑
i=1

µi(λ
αi
2 − ( 1

λ1λ2
)αi)

– Case of equibiaxial stretch : σ1 = σ2 = σ, σ3 = 0 (particular case of
biaxial stretch) and λ1 = λ2 = λ, λ3 = λ−2 (by incompressibility).
One obtains due to these conditions :

σ = −
N∑
i=1

µiλ
−2αi +

N∑
i=1

µiλ
αi =

N∑
i=1

µi(λ
αi − λ−2αi).

Applying the prescribed values of the terms, namely N = 3, α1 =
1, 3, α2 = 5, α3 = −2, µ1 = 0, 63MPa, µ2 = 0, 0012MPa and µ3 =
−0, 01MPa, we can plot σ1, σ2, σ3 as a function of their corresponding
elongation.

Figure 6.1 shows the evolution of the uniaxial stress with respect to
its elongation, while figure 6.2 exhibits the evolution of the equibiaxial
stress.

Solution 6.11

The stress tensor has only one non zero component, namely σ11 = S,
where S is the traction load per unit surface.

The free energy f is given by (B6.159)

1

ρ
σij =

∂f

∂εij
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Figure 6.1 Uniaxial stress

and thus

S

ρ
=

∂f

∂ε11
. (6.3)

By (B6.110), one has

ε11 =
λ+ µ

µ(3λ+ 2µ)
S =

1

E
S ,

where E is the Young’s modulus (B6.109). One writes (6.3) as follows

S

ρ
=
∂f

∂S

∂S

∂ε11
.

So

∂f

∂S
=

S

ρE

and finally we have integrating :

f =
1

ρE

S2

2
+ f0 ,

where f0 is the unstressed free energy in natural state.
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Figure 6.2 Equibiaxial stress

Solution 6.12

The development of f(ε, T ) in the neighborhood of ε = 0, T = T0 is
written as :

ρ f = ρ f0 − ρ s0 (T − T0) +
λ

2
εiiεkk + µεijεij

+ εijcij(T − T0)−
ρc

2T0
(T − T0)2 , (B6.165)

where we have eliminated all terms of order greater than 2, and where
the coefficients f0, s0, cij and c are still to be determined. The factors ρ
and ρ

T0
were added to simplify subsequent steps.

For an isotropic material, cij must isotropic, of the form a δij with
a a scalar. Taking this scalar as a = −(3λ + 2µ)α, with α yet to be
determined, one has

cij εij (T −T0) = −(3λ+ 2µ) α εkk (T −T0) . (B6.166)

Furthermore, combining (B6.165) and (B6.166) one obtains by (B6.159)
the next relation

σij = ρ
∂f

∂εij

= λεkkδij + 2µεij − (3λ+ 2µ)α(T − T0)δij .
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Inverting to obtain ε as a function of σ, one has

ε =
1

2µ

{
σ +

[
2µα(T − T0)−

λ

3λ+ 2µ
trσ

]
I

}
,

where we have used the relation

εkk =
1

3λ+ 2µ
σkk + 3α(T − T0) .

As a reminder, α is the thermal expansion coefficient and has di-
mensions of the inverse of temperature. If we consider the case of free
dilatation without exterior stresses, then σ = 0 and one has

ε = α(T − T0)I .

As T = T (x1), ε11 is the only non zero component and consequently

ε11 = ε11(x1) = α(T1 − T0)
x1
L
.

Solution 6.13

To solve this problem,we will use the solution of the second part
of exercise 6.2. Introducing the Fourier conduction law q = −k∇T in
(6.2), one obtains

ρcv
DT

Dt
= −p tr d+ div(k∇T ) + r .

By the mass conservation equation (B3.41), one has the equality :

tr d = −1

ρ

Dρ

Dt

and the energy equation becomes

ρcv
DT

Dt
=
p

ρ

Dρ

Dt
+ div(k∇T ) + r .

Using the state equation (B6.136), we transform the previous equation
in the relation :

ρcv
DT

Dt
=
Dp

Dt
− ρRDT

Dt
+ div(k∇T ) + r .

Finally, one can write taking (B6.141) into account

ρcp
DT

Dt
=
Dp

Dt
+ div(k∇T ) + r .
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Solution 6.14

1) The relations (B6.175)-(B6.176) lead to write

σdij + σ0δij = 3λε0δij + 2µ(εdij + ε0δij) . (6.4)

Let us recall that the deviatoric tensors have a zero trace

tr σdij = tr εdij = 0 .

Therefore, computing the trace of (6.4), one obtains

3σ0 = 3λε0.3 + 2µε0.3

and
σ0 = 3λε0 + 2µε0 = (3λ+ 2µ)ε0 .

The definition (B6.119)

K =
3λ+ 2µ

3

gives
σ0 = 3Kε0 .

We rewrite (6.4) successively

σdij + 3Kε0δij = 3λε0δij + 2µεdij + 2µε0δij

= (3λ+ 2µ)ε0δij + 2µεdij

= 3Kε0δij + 2µεdij .

One finds
σdij = 2µεdij .

2) Let us recall that for a second order symmetric tensor L, one has
Ln = λn, where λ is the eigenvalue of L and n the corresponding
eigenvector (sec. 1.3.8).
For the deviatoric stress tensor σdij , one has

σdijnj = λni . (6.5)

We modify (6.5) as follows

σdijnj + σ0ni = σ0ni + λni = (λ+ σ0)ni

With the help of (B6.175), one writes

σdijnj + σ0ni = σdijnj + σ0δijnj = (σdij + σ0δij)nj = σijnj .
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And we obtain σijnj = (λ+ σ0)ni. This shows that σdij and σij have
the same eigenvectors.
As regards the displacements, we proceed in a similar fashion. Using
(B6.177) in (6.5) gives

εdijnj =
λ

2µ
ni . (6.6)

This shows that σdij and εdij have the same eigenvectors and conse-
quently, the same principal directions. Using (B6.176) to rewrite
(6.6) leads to the relation

(εij − ε0δij)nj =
λ

2µ
ni

or

εijnj = (ε0 +
λ

2µ
)ni .

Comparing this last relation with (6.6), one concludes that εij and
εdij have the same eigenvectors. Finally, as

σdij and σij have the same eigenvectors ni,

σdij and εdij have the same eigenvectors ni,

εij and εdij have the same eigenvectors ni,
we conclude that εij and σij have the same eigenvectors ni and conse-
quently, the same principal directions.

3) The potential strain energy is defined by the next relation

W (ε) =
1

2
εijσij .

One thus has

W (ε) =
1

2
εijσij =

1

2
εij(λεkkδij + 2µεij) =

1

2
λε2kk + µεijεij .

With the help of (B6.176), one writes

W (ε) =
1

2
λ(3ε0)

2 + µ(εdij + ε0δij)(ε
d
ij + ε0δij)

=
9

2
λ(ε0)

2 + µ(εdijε
d
ij + 3ε20)

=
9

2
λ(ε0)

2 + 3µ(ε0)
2 + µεdijε

d
ij

=
9

2

3λ+ 2µ

3
ε20 + µεdijε

d
ij

=
9

2
Kε20 + µεdijε

d
ij . (B6.178)
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4) For the stability condition

W (ε) > 0

to be satisfied, as relation (B6.178) is composed of two squares, the
coefficients must be such that

K > 0 et µ > 0 .

Solution 6.15

1) With (B6.106),(B6.180) and (B6.181), one writes

εij = − λδij
2µ(3λ+ 2µ)

σnn +
σij
2µ

= − λδij
2µ(3λ+ 2µ)

σnn +
σδij
2µ

=

(
− 3λ

2µ(3λ+ 2µ)
+

1

2µ

)
σδij

=
−3λ+ 3λ+ 2µ

2µ(3λ+ 2µ)
σδij

=
σ

3K
δij

= εδij .

2) By Hooke’s law (B6.104) and (B6.182), one has

σij = λεkkδij + 2µεij

=
λγ

2
(mknk +mknk)δij + µγ(minj +mjni)

= 0 + µγ(minj +mjni)

= τ(minj +mjni) .

3) With (B6.106) and (B6.184), one obtains

εij = − λδij
2µ(3λ+ 2µ)

σnmnm +
1

2µ
σninj

= − λσ

2µ(3λ+ 2µ)
(δij − ninj + ninj) +

1

2µ
σninj

=

(
−λ+ 3λ+ 2µ

2µ(3λ+ 2µ)

)
σninj −

λσ

2µ(3λ+ 2µ)
(δij − ninj)

=

(
(λ+ µ)σ

µ(3λ+ 2µ)

)
ninj −

λσ

2µ(3λ+ 2µ)
(δij − ninj)

= εnninj + εT (δij − ninj) .





Chapitre 7

Introduction to Solid Mechanics

Solution 7.1

With (B7.18), equations (B7.21)-(B7.23) yield

σ11 =
E

(1 + ν)(1− 2ν)

(
∂u1
∂x1

(1− ν) + ν
∂u2
∂x2

)
σ22 =

E

(1 + ν)(1− 2ν)

(
∂u2
∂x2

(1− ν) + ν
∂u1
∂x1

)
σ12 =

E

2(1 + ν)

(
∂u1
∂x2

+
∂u2
∂x1

)
.

Let us evaluate the partial derivatives of the components of the stress
tensor with respect to the space variables

∂σ11
∂x1

=
E

(1 + ν)(1− 2ν)

(
∂2u1
∂x21

(1− ν) + ν
∂2u2
∂x1∂x2

)
∂σ22
∂x2

=
E

(1 + ν)(1− 2ν)

(
∂2u2
∂x22

(1− ν) + ν
∂2u1
∂x1∂x2

)
∂σ12
∂x1

=
E

2(1 + ν)

(
∂2u1
∂x1∂x2

+
∂2u2
∂x21

)
∂σ12
∂x2

=
E

2(1 + ν)

(
∂2u1
∂x22

+
∂2u2
∂x1∂x2

)
.

Inserting these derivatives in the equilibrium equations given by (B7.20)

∂σ11
∂x1

+
∂σ12
∂x2

+ f1 = 0

∂σ22
∂x2

+
∂σ12
∂x1

+ f2 = 0 ,
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one finds successively

∂σ11
∂x1

+
∂σ12
∂x2

+ f1 = 0

E

(1 + ν)(1− 2ν)

(
∂2u1
∂x21

(1− ν) + ν
∂2u2
∂x1∂x2

)
+

E

2(1 + ν)

(
∂2u1
∂x22

+
∂2u2
∂x1∂x2

)
+ f1 = 0

2

1− 2ν

(
∂2u1
∂x21

(1− ν) + ν
∂2u2
∂x1∂x2

)
+
∂2u1
∂x22

+
∂2u2
∂x1∂x2

+
f1
µ

= 0

2(1− ν)

1− 2ν

∂2u1
∂x21

+
2ν

1− 2ν

∂2u2
∂x1∂x2

+
∂2u1
∂x22

+
∂2u2
∂x1∂x2

+
f1
µ

= 0

2(1− ν)

1− 2ν

∂2u1
∂x21

+
1

1− 2ν

∂2u2
∂x1∂x2

+
∂2u1
∂x22

+
f1
µ

= 0

1

1− 2ν

∂2u1
∂x21

+
∂2u1
∂x21

+
1

1− 2ν

∂2u2
∂x1∂x2

+
∂2u1
∂x22

+
f1
µ

= 0

µ

(
∂2u1
∂x21

+
∂2u1
∂x22

)
+

µ

1− 2ν

∂

∂x1

(
∂u1
∂x1

+
∂u2
∂x2

)
+ f1 = 0

µ

(
∂2u1
∂x21

+
∂2u1
∂x22

)
+ (λ+ µ)

∂

∂x1

(
∂u1
∂x1

+
∂u2
∂x2

)
+ f1 = 0 .

A similar reasoning leads to (B7.313).

Solution 7.2

With (B7.41), the equations (B7.43) are written as

σ11 =
E

1− ν2

(
∂u1
∂x1

+ ν
∂u2
∂x2

)
σ22 =

E

1− ν2

(
∂u2
∂x2

+ ν
∂u1
∂x1

)
σ12 =

E

2(1 + ν)

(
∂u1
∂x2

+
∂u2
∂x1

)
.



Introduction to Solid Mechanics 67

Let us evaluate the partial derivatives of the components of the stress
tensor with respect to the space variables

∂σ11
∂x1

=
E

1− ν2

(
∂2u1
∂x21

+ ν
∂2u2
∂x1∂x2

)
∂σ22
∂x2

=
E

1− ν2

(
∂2u2
∂x22

+ ν
∂2u1
∂x1∂x2

)
∂σ12
∂x1

=
E

2(1 + ν)

(
∂2u1
∂x1∂x2

+
∂2u2
∂x21

)
∂σ12
∂x2

=
E

2(1 + ν)

(
∂2u1
∂x22

+
∂2u2
∂x1∂x2

)
.

The equilibrium equations are given by (B7.20)

∂σ11
∂x1

+
∂σ12
∂x2

+ f1 = 0

∂σ22
∂x2

+
∂σ12
∂x1

+ f2 = 0 .

Thus the first equilibrium equation becomes successively

E

1− ν2

(
∂2u1
∂x21

+ ν
∂2u2
∂x1∂x2

)
+

E

2(1 + ν)

(
∂2u1
∂x22

+
∂2u2
∂x1∂x2

)
+ f1 = 0

2

1− ν

(
∂2u1
∂x21

+ ν
∂2u2
∂x1∂x2

)
+
∂2u1
∂x22

+
∂2u2
∂x1∂x2

+
f1
µ

= 0

2

1− ν
∂2u1
∂x21

+
2ν

1− ν
∂2u2
∂x1∂x2

+
∂2u1
∂x22

+
∂2u2
∂x1∂x2

+
f1
µ

= 0

2

1− ν
∂2u1
∂x21

+
∂2u1
∂x21

− ∂2u1
∂x21

+
∂2u1
∂x22

+
1 + ν

1− ν
∂2u2
∂x1∂x2

+
f1
µ

= 0

µ

(
∂2u1
∂x21

+
∂2u1
∂x22

)
+ µ

1 + ν

1− ν
∂2u1
∂x21

+ µ
1 + ν

1− ν
∂2u2
∂x1∂x2

+ f1 = 0

µ

(
∂2u1
∂x21

+
∂2u1
∂x22

)
+

E

2(1− ν)

∂

∂x1

(
∂u1
∂x1

+
∂u2
∂x2

)
+ f1 = 0 .

A similar reasoning leads to (B7.315).

Solution 7.3

The Navier equations (B7.6) are written as

(λ+ µ)uk,ki + µui,jj + fi = 0 . (7.1)
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With the ui expression given by (B7.315), one has successively

µui,jj =
λ+ 2µ

λ+ µ
gi,mmjj − gn,nijj

as well as

(λ+ µ)uk =
λ+ 2µ

µ
gk,mm −

λ+ µ

µ
gn,nk .

Taking twice the derivative of this last relation, one obtains

(λ+ µ)uk,ki =
λ+ 2µ

µ
gk,mmki −

λ+ µ

µ
gn,nkki =

=
λ+ 2µ

µ
gk,kmmi −

λ+ µ

µ
gk,kmmi

= gk,kmmi .

Inserting these expressions in the Navier equation (7.1), one has

gk,kmmi +
λ+ 2µ

λ+ µ
gi,mmjj − gn,nijj

= gk,kmmi +
λ+ 2µ

λ+ µ
gi,mmjj − gk,kmmi

=
λ+ 2µ

λ+ µ
gi,mmjj

= 0

if gi,mmnn = 0.

Solution 7.4

1) We use identity (B1.238)

∇×∇× u =∇(∇ · u)−∇2u

that gives

∇(∇ · u) = ∇2u+∇×∇× u .

We introduce this last relation in (B7.7) that becomes

µ∇2u+ (λ+ µ)
(
∇2u+∇×∇× u

)
= 0 .

Therefore

(λ+ 2µ)∇2u+ (λ+ µ)∇×∇× u = 0 .
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2) From relation (B7.7), one writes

µ

λ+ µ
∇2u+∇(∇ · u) = 0 .

The elasticity constants are linked together. By (B6.109), 2ν =
λ/(λ+ µ). Thus µ/(λ+ µ) = 1− 2ν and then the result.

3) We use relation (B1.238) in the Navier equation (B7.7)

µ (∇(∇ · u)−∇×∇× u) + (λ+ µ)∇(∇ · u) = 0

from which we get easily

(λ+ 2µ)∇(∇ · u)− µ∇×∇× u = 0 .

Solution 7.5

Taking the divergence of the relation

(λ+ 2µ)∇2u = ρ
∂2u

∂t2
, (B7.209)

one obtains

(λ+ 2µ) div ∇2u = ρ
∂2(div u)

∂t2
.

Afterwards we use (B1.191) to obtain

(λ+ 2µ)∇2(div u) = ρ
∂2(div u)

∂t2
.

Solution 7.6

With div u = εii = 0, the motion equations (B7.202) become

µ∇2u = ρ
∂2u

∂t2
.

We take the curl of this last relation

µ∇×
(
∇2u

)
= ρ∇× ∂2u

∂t2
.

Using (B1.237), one finds

µ∇2(∇× u) = ρ
∂2(∇× u)

∂t2
. (B7.319)



70 Introduction to Solid Mechanics

Solution 7.7

The function Φ is a solution of the problem if it satisfies the bihar-
monic equation (B7.38). To this end, let us first calculate its Laplacian.
One finds (cf. (BA.27))

∇2Φ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
Φ

=
1

r2
∂2Φ

∂θ2

= −4B

r2
sin 2θ .

Afterwards, one evaluates the double Laplacian. One has

∇4Φ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
−4B

r2
sin 2θ

)
= −24B

r4
sin 2θ +

1

r

8B

r3
sin 2θ +

1

r2
4B

r2
· 2 · 2 sin 2θ

= 0 .

The stress components are given by the relations (BA.28)-(BA.30)

σrr =
1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
= −4B

r2
sin 2θ

σθθ =
∂2Φ

∂r2
= 0

σrθ =
1

r2
∂Φ

∂θ
− 1

r

∂2Φ

∂θ∂r
=

1

r2
(A+ 2B cos 2θ) .

The equilibrium of the corner is given by the relation∫ α

−α
(σrθrdθ)r −M = 0

and thus ∫ α

−α
(A+ 2B cos 2θ)dθ = M . (7.2)

To the condition (7.2), we must add the one expressing that the corner
edges are free and not subjected to any shear stress. One writes

σrθ(θ = α) = A+ 2B cos 2α = 0 . (7.3)

We thus have A = −2B cos 2α. Replacing A by this value in (7.2) and
integrating, we find

B =
M

2 sin 2α− 4α cos 2α
.
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The radial stress becomes

σrr = − 4M

2 sin 2α− 4α cos 2α

sin 2θ

r2
= −2C

r2
sin 2θ

with

C = − M

sin 2α− 2α cos 2α
.

The shear stress is

σrθ = −M
r2

cos 2α− cos 2θ

sin 2α− 2α cos 2α
.

Solution 7.8

(a) One verifies easily that the stress function (B7.322) satisfies the
biharmonic equation. From the expressions in the appendix B(A.28)-
B(A.30), one obtains

σrr =
2C cos θ

r
, σθθ = σrθ = 0 .

To find the C constant, one considers the equilibrium of the slab at a
distance r from the origin. Thus

P = C

∫ α

−α

2 cos θ

r
r cos θ dθ = 2C

∫ α

−α
cos2 θ dθ .

Therefore

P = 2C

[
θ

2
+

1

4
sin 2θ

]α
−α

= C [2α+ sin 2α]

Thus, one finds

C =
P

2α+ sin 2α
.

The stress takes the form

σrr =
2P cos θ

r(2α+ sin 2α)

(b) Setting α = π/2, one obtains the stresses for a plate subject to a
linear load

σrr =
2P

π

cos θ

r
, σθθ = σrθ = 0 .

Let us note that the difference of this result with (B7.163) comes from
the fact that the directions of σrr are opposite in both problems.





Chapitre 8

Introduction to Newtonian Fluid

Mechanics

Solution 8.1

The Navier-Stokes equations are treated in section B8.4. The mass
conservation law is given by (B3.44) or (B8.9)

∂ρ

∂t
+
∂ρvi
∂xi

= 0 .

The momentum conservation equation (B3.96) gives

∂σij
∂xj

+ ρbi = ρ
Dvi
Dt

.

The Newtonian viscous fluid constitutive equation is written as (B6.14)

σij = −p δij + λ dkk δij + 2µdij .

Inserting (B6.14) in (B3.96), one obtains

ρ
Dvi
Dt

=
∂

∂xj
(−pδij + λdkkδij) +

∂

∂xj
(2µdij) + ρbi ,

and thus the relation (B8.10)

ρ
Dvi
Dt

= − ∂p

∂xi
+

∂

∂xi
(λdkk) +

∂

∂xj
(2µdij) + ρbi ,

as
∂

∂xj
(−p+ λdkk) δij =

∂

∂xi
(−p+ λdkk) .
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The energy equation (B8.7), taking the Fourier conduction law into
account (B6.123), becomes

ρcv
DT

Dt
=
p

ρ

Dρ

Dt
+ λ (trd)2 + 2µd : d+ div(k∇T ) + r .

If the coefficients λ and µ are constant, the momentum equation gives

ρ
Dvi
Dt

= − ∂p

∂xi
+ λ

∂

∂xi
(dkk) + µ∆vi + µ

∂

∂xi
(
∂vj
∂xj

) + ρbi .

If the flow is incompressible, it results that div v = tr d = 0 and the
previous equation simplifies itself to

ρ
Dvi
Dt

= − ∂p

∂xi
+ µ∆vi + ρbi .

Solution 8.2

The solutions obtained in section B8.7.1, i.e. (B8.51) and (B8.63),
for the plane Couette and Poiseuille flows, respectively, result from linear
differential equations. As the non-linear terms of the Navier-Stokes equa-
tions do not intervene in this problem, one invokes the principle of linear
superposition and the solution of the combined plane Couette-Poiseuille
flow is written as

v1 = −h
2

2µ

dP

dx1

x2
h

(1− x2
h

) +
Ux2
h

.

The shear stress is

σ12 = µ
dv1
dx2

= −h
2

dP

dx1
(1− 2x2

h
) +

µU

h
.

Finally, the flow rate is

Q =

∫ h

0
v1 dx2 = − h3

12µ

dP

dx1
+
Uh

2
.

Solution 8.3

From the geometrical point of view, this flow occurs between two
concentric cylinders as in the circular Couette flow. The inner cylinder
of radius R1 and the outer one of radius R2 have a rate of angular
rotation ω1 and ω2, respectively. The viscous fluid between the cylinders
is also subject to an axial pressure gradient. As the flow is in steady
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state (∂/∂t = 0) and presents a symmetry of revolution (∂/∂θ = 0), the
velocity profile depends only on r. One has

vr = vr(r), vθ = vθ(r), vz = vz(r), p = p(r, z) . (8.1)

As the fluid sticks to the wall, the boundary conditions are

vr(R1) = vr(R2) = 0, vθ(R1) = ω1R1, vθ(R2) = ω2R2,

vz(R1) = vz(R2) = 0 . (8.2)

By a similar reasoning as the one for the circular Couette flow, it is
possible to show that the component vr vanishes everywhere (cf. (B8.98)
and (B8.99)). The Navier-Stokes equations in cylindrical coordinates
(A.32)-(A.34) become

1

ρ

∂p

∂r
=
v2θ
r
, (8.3)

1

r

∂

∂r

(
r
∂vθ
∂r

)
−
v2θ
r

= 0 , (8.4)

−∂p
∂z

+ µ

(
∂2vz
∂r2

+
1

r

∂vz
∂r

)
= 0. (8.5)

The Couette solution (B8.102) remains valid

vθ(r) = Ar +
B

r
=
ω2R

2
2 − ω1R

2
1

R2
2 −R2

1

r − (ω2 − ω1)R
2
1R

2
2

R2
2 −R2

1

1

r
. (8.6)

Relation (8.3) gives

p = ρ

∫ r

R1

v2θ
r′
dr′ + f(z) , (8.7)

where vθ is the Couette solution and f(z) is an undetermined function
of z. Introducing (8.7) in (8.5), one finds

−df
dz

+ µ
1

r

d

dr

(
r
dvz
dr

)
= 0 . (8.8)

As f does depend only on z and vz is only function of r, one has

df

dz
= µ

1

r

d

dr

(
r
dvz
dr

)
= −C ,
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where C is a constant. Here we will refer to the development described
in pages B295 and B296 for the integration of vz. The solutions are
written by taking the boundary conditions (8.2) into account

f(z) = −Cz +D , (8.9)

vz(r) =
C

4µ

[
−r2 +

R2
2 −R2

1

ln(R2/R1)
ln r +

R2
1 lnR2 −R2

2 lnR1

ln(R2/R1)

]
.(8.10)

The factor D is a constant. The pressure field is given by

p(r, z) = ρ

∫ r

R1

v2θ
r′
dr′ − Cz +D . (8.11)

Pressure is known up to a constant D, that will set the reference pres-
sure ; the pressure gradient −C acts in the direction of the axis and
finally, the first term of the right hand side of (8.11) balances the cen-
trifugal force of the rotating fluid. Note that the axial velocity does not
depend on the angular velocity of the cylinders, while the azimuthal
velocity vθ is independent of the pressure gradient.

Solution 8.4

We will refer to the spherical coordinates (r, θ, ϕ) as in figure B8.20.
The rotation axis of the sphere with the angular velocity Ω = Ωex3 is
axis x3. As a consequence of the problem’s symmetries, the velocity field
has only a single component such that

v = vϕ(r, θ)eϕ . (8.12)

We solve the Stokes equations with the boundary conditions

v = 0 in r =∞ (8.13)

vϕ = ΩR sin θ in r = R . (8.14)

The form of the boundary conditions (8.14) suggest to search the solution
under the form

vϕ = ΩRf(r) sin θ , p = p∞ . (8.15)

One verifies that the mass conservation equation (BB.30) is trivially
verified by (8.15). The pressure gradient does not intervene in (BB.33)
because of axial symmetry (∂/∂ϕ = 0). One has

∆vϕ −
vϕ

r2 sin2 θ
= ΩR sin θ

(
f ′′ +

2f ′

r
− 2f

r2

)
= 0 . (8.16)
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The f solution is written as f(r) =
∑+∞

n=−∞Cnr
n. This gives

f(r) = C1r +
C2

r2
. (8.17)

The boundary conditions (8.13) and (8.14) impose C1 = 0 and C2 = R2,
respectively. The velocity field around the rotating sphere is

vϕ = Ω
R3

r2
sin θ eϕ .

Solution 8.5

The boundary conditions are

vϕ = Ω1R1 sin θ in r = R1 (8.18)

vϕ = Ω2R2 sin θ in r = R2 . (8.19)

The considerations of the previous exercise remain valid for the velocity
profile search under the form (8.15)

vϕ = f(r) sin θ , p = p∞ . (8.20)

We will note that we do not use anymore the factor ΩR, as now we have
two radii and two angular velocities to take care of. The equation to
solve is thus

∆vϕ −
vϕ

r2 sin2 θ
= sin θ

(
f ′′ +

2f ′

r
− 2f

r2

)
= 0 , (8.21)

whose solution is written as

f(r) = C1r +
C2

r2
. (8.22)

The imposition of the boundary conditions (8.18) and (8.19) yields

C1 =
Ω2R

3
2 − Ω1R

3
1

R3
2 −R3

1

, C2 =
Ω1 − Ω2

R3
2 −R3

1

R3
1R

3
2 . (8.23)

Solution 8.6

We consider the streamline SA from the free surface S toward the
orifice Or of the enclosure (cf. figure 8.1) and we apply to it the Bernoulli
theorem (B8.223) to obtain

pS +
ρv2S
2

+ ρχS = pA +
ρv2A

2
+ ρχA .
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h

A
Or.

x3

O

S

Figure 8.1 Enclosure with free surface and orifice.

By (B8.193), one obtains

−g = − ∂χ

∂x3
,

and thus χ = gx3+C. At the free surface the pressure is that of ambiant
air ; it is the same situation at the orifice. Therefore pS = pA = pair. If
we set the origin of the x3 axis at the level of the orifice, the contribution
of ρχ is equal to C. For the sake of simplicity, we set C = 0 , while at
the free surface x3 = h, ρχS = ρgh. On the free surface, the velocity vS
is zero (this is especially true when the enclosure is large) and setting
vA = v one has

ρgh =
ρ

2
v2 . (8.24)

This gives the sought relation, which is known as Torricelli formula.

Solution 8.7

From the Navier-Stokes equations (B8.17) without body forces and
assuming a velocity field of the form

v1 = v1(x2, x3), v2 = v3 = 0 , (8.25)

the only relation that gives a non zero contribution is the one related to
the v1 velocity component. One finds

0 = − ∂p

∂x1
+ µ

(
∂2v1
∂x22

+
∂2v1
∂x23

)
, (8.26)
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or
1

µ

∂p

∂x1
=
∂2v1
∂x22

+
∂2v1
∂x23

= C , (8.27)

as p = p(x1) and v1 = v1(x2, x3).

On the elliptical wall v1 = 0 and thus A + B = 0, or B = −A. We
calculate the second order derivatives of the velocity that are injected
in (8.27). One has

2A

(
1

a2
+

1

b2

)
=

1

µ

∂p

∂x1
= C ,

From which we get A and B = −A. One obtains a generic solution, that
will become particular for a given pressure gradient.

Solution 8.8

UO
R2

R1

r

O z

Figure 8.2 Flow between two concentric cylinders, one fixed
and the other moving with the velocity U .

We work in cylindrical coordinates with the z axis in the direction
of the axes of both cylinders (cf. figure 8.2). The only non zero velocity
component is clearly vz. Moreover vz = vz(r).

The flow is kinematically forced by the displacement of the inner
cylinder. No pressure gradient is involved in the fluid motion.

Equation (A.34) gives

1

r

d

dr

(
r
dvz
dr

)
= 0 . (8.28)

Integrating (8.28), one finds

vz = C1 ln r + C2 . (8.29)
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The boundary conditions are

vz(r = R1) = U (8.30)

vz(r = R2) = 0 . (8.31)

Imposing (8.30) and (8.31) to (8.29), one obtains the velocity field

vz =
U

ln R1
R2

ln
r

R2
.

The only non zero component of the stress tensor is σrz equal to

σrz = µ

(
∂vz
∂r

+
∂vr
∂z

)
= µ

U

ln R1
R2

1

r
. (8.32)

The friction force per unit length that acts on the moving cylinder is
given by the integral∫ 1

0
σrz|r=R12πR1dz = 2πµ

U

ln R1
R2

.


